
Package: colorSpec (via r-universe)
August 26, 2024

Type Package

Title Color Calculations with Emphasis on Spectral Data

Version 1.5-0

Encoding UTF-8

Date 2024-01-28

Author Glenn Davis [aut, cre]

Maintainer Glenn Davis <gdavis@gluonics.com>

Description Calculate with spectral properties of light sources,
materials, cameras, eyes, and scanners. Build complex systems
from simpler parts using a spectral product algebra. For light
sources, compute CCT, CRI, and SSI. For object colors, compute
optimal colors and Logvinenko coordinates. Work with the
standard CIE illuminants and color matching functions, and read
spectra from text files, including CGATS files. Estimate a
spectrum from its response. A user guide and 9 vignettes are
included.

License GPL (>= 3)

LazyLoad yes

LazyData yes

Depends R (>= 3.5.0)

Suggests spacesXYZ, rootSolve, MASS, quadprog, rgl, knitr, rmarkdown,
spacesRGB, microbenchmark, arrangements

Enhances plyr

NeedsCompilation no

VignetteBuilder knitr

BuildVignettes yes

ByteCompile no

Date/Publication 2024-01-28 06:00:02 UTC

Repository https://glenndavis52.r-universe.dev

RemoteUrl https://github.com/cran/colorSpec

1



2 Contents

RemoteRef HEAD

RemoteSha f8cb736daafc44673decc80751deaacff631fc33

Contents
colorSpec-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
actinometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
applyspec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
as.data.frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
atmosphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
bandSpectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
bind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
calibrate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
canonicalOptimalColors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
chop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
colorSpec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
computeADL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
computeCCT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
computeCRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
computeSSI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
convolvewith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
coredata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
cs.options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
D50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
D65 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
daylight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
DisplayRGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
emulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
extradata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
F96T12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Flea2.RGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Fluorescents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
HigherPasserines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Hoya . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
interpolate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
invert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
lightResponsivitySpectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
LightSpectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
linearize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
lms1971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
lms2000 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
luminsivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
materialSpectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56



colorSpec-package 3

multiply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
officialXYZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
photometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
plotOptimals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
probeOptimalColors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
ptransform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
quantity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
radiometric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
readCGATS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
readSpectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
resample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
responsivityMetrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
scanner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
sectionOptimalColors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
solar.irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
specnames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
standardRGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
theoreticalRGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
wavelength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
xyz1931 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
xyz1964 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Index 103

colorSpec-package Package colorSpec - Color Calculations with Emphasis on Spectral
Data

Description

Package colorSpec is for working with spectral color data in R.

Details

Features:

1. a clear classification of the commonly seen spectra into 4 types - depending on the vector
space to which they belong

2. flexible organization for the spectra in memory, using an S3 class - colorSpec
3. a product algebra for the colorSpec objects

4. uniform handling of biological eyes, electronic cameras, and general action spectra

5. a few advanced calculations, such as computing optimal colors (aka Macadam Limits)



4 ABC

6. inverse colorimetry, e.g. reflectance recovery from response

7. built-in essential tables, such as the CIE illuminants and color matching functions

8. a package logging system with log levels taken from the popular Log4J

9. support for reading a few spectrum file types, including CGATS

10. bonus files containing some other interesting spectra

11. minimal dependencies on other R packages

Non-features:

1. there is no support for many common 3D color spaces, such as CIELAB, HSL, etc.. For these
spaces see packages colorspace, colorscience, spacesRGB, and spacesXYZ.

2. there are few non-linear operations

3. there is little support for scientific units; for these see package colorscience

4. photons are parameterized by wavelength in nanometers; other wavelength units (such as
Angstrom and micron) and alternative parameterizations (such as wavenumber and electron-
volt) are not available

Regarding the non-linear operations in 2, the only such operations are conversion of linear RGB
to display RGB, conversion of absorbance to transmittance, and the reparameterized wavelength
in computeADL. The electronic camera model is purely linear with no dark current offset or other
deviations.

Many ideas are taken from packages hyperSpec, hsdar, pavo, and zoo.

Author(s)

Glenn Davis <gdavis@gluonics.com>

See Also

colorSpec for the S3 class provided by this package.

colorSpec User Guide

ABC Standard Illuminants A, B, and C (1931)

Description

A.1nm standard Illuminant A, 360 to 780 nm at 1 nm intervals
B.5nm standard Illuminant B, 320 to 780 nm at 5 nm intervals
C.5nm standard Illuminant C, 320 to 780 nm at 5 nm intervals



actinometric 5

Format

Each is a colorSpec object organized as a vector, with quantity equal to "energy".

Details

All of these have been divided by 100, to make the values at 560nm near 1 instead of 100.

Source

http://www.cvrl.org

References

Günther Wyszecki and W. S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982.

A Table I(3.3.4) pp. 754-758.
B Table II(3.3.4) pp. 759.
C Table II(3.3.4) pp. 759.

See Also

D50 D65

Examples

summary(xyz1931.1nm)
white.point = product( D65.1nm, xyz1931.1nm, wave='auto' )

actinometric convert a colorSpec object to be actinometric

Description

Convert a radiometric colorSpec object to have quantity that is actinometric (number of photons).
Test an object for whether it is actinometric.

Usage

## S3 method for class 'colorSpec'
actinometric( x, multiplier=1, warn=FALSE )

## S3 method for class 'colorSpec'
is.actinometric( x )

http://www.cvrl.org


6 actinometric

Arguments

x a colorSpec object

multiplier a scalar which is multiplied by the output, and intended for unit conversion

warn if TRUE and a conversion actually takes place, the a WARN message is issued.
This makes the user aware of the conversion, so units can be verified. This can
be useful when actinometric() is called from another colorSpec function.

Details

If the quantity of x does not start with 'energy' then the quantity is not radiometric and so x is
returned unchanged. Otherwise x is radiometric (energy-based), and must be converted.

If type(x) is 'light' then the most common radiometric energy unit is joule.
The conversion equation is:

Q = E ∗ λ ∗ 106/(NA ∗ h ∗ c)

wher Q is the photon count, E is the energy of the photons, NA is Avogadro’s constant, h is Planck’s
constant, c is the speed of light, and λ is the wavelength. The output unit of photon count is (µmole
of photons) = (6.02214 ∗ 1017 photons). If a different unit for Q is desired, then the output should
be scaled appropriately. For example, if the desired unit of photon count is exaphotons, then set
multiplier=0.602214.

If the quantity(x) is 'energy->electrical', then the most common radiometric unit of respon-
sivity to light is coulombs/joule (C/J) or amps/watt (A/W). The conversion equation is:

QE = Re ∗ ((h ∗ c)/e)/λ

where QE is the quantum efficiency, Re is the energy-based responsivity, and e is the charge of an
electron (in C).
If the unit of x is not C/J, then multiplier should be set appropriately.

If the quantity(x) is 'energy->neural' or 'energy->action', the most common radiometric
unit of energy is joule (J).

The conversion equation is:

Rp = Re ∗ 10−6 ∗ (NA ∗ h ∗ c)/λ

where Rp is the photon-based responsivity, and Re is the energy-based responsivity, The output unit
of photon count is (µmole of photons) = (6.02214 ∗ 1017 photons). This essentially the reciprocal
of the first conversion equation.

The argument multiplier is applied to the right side of all the above conversion equations.

Value

actinometric() returns a colorSpec object with quantity that is actinometric (photon-based) and
not radiometric (energy-based). If type(x) is a material type ('material' or 'responsivity.material')
then x is returned unchanged.

If quantity(x) starts with 'photons', then is.actinometric() returns TRUE, and otherwise
FALSE.



applyspec 7

Note

To log the executed conversion equation, execute cs.options(loglevel='INFO').

Source

Wikipedia. Photon counting. https://en.wikipedia.org/wiki/Photon_counting

See Also

quantity, type, cs.options, radiometric

Examples

colSums( solar.irradiance ) # step size is 1nm, from 280 to 1000 nm. organized as a matrix
# AirMass.0 GlobalTilt AirMass.1.5
# 944.5458 740.3220 649.7749 # irradiance, watts*m^{-2}

colSums( actinometric(solar.irradiance) )
# AirMass.0 GlobalTilt AirMass.1.5
# 4886.920 3947.761 3522.149 # photon irradiance, (umoles of photons)*sec^{-1}*m^{-2}

colSums( actinometric(solar.irradiance,multiplier=0.602214) )
# AirMass.0 GlobalTilt AirMass.1.5
# 2942.972 2377.397 2121.088 # photon irradiance, exaphotons*sec^{-1}*m^{-2}

applyspec apply a function to each spectrum in a colorSpec object

Description

apply a function to each spectrum in a colorSpec object

Usage

## S3 method for class 'colorSpec'
applyspec( x, FUN, ... )

Arguments

x a colorSpec object with N wavelengths

FUN a function that takes an N-vector as argument and returns an N-vector

... additional arguments passed to FUN

Details

applyspec() simply calls apply() with the right MARGIN.

https://en.wikipedia.org/wiki/Photon_counting


8 as.data.frame

Value

a colorSpec object with the same dimensions, wavelength, quantity, and organization. If FUN
does not return an N-vector, it is an ERROR and applyspec() returns NULL.

See Also

quantity, wavelength, linearize, organization, apply

Examples

# convert absorbance to transmittance
path = system.file( "extdata/stains/Hematoxylin.txt", package='colorSpec' )
x = readSpectra( path )
x = applyspec( x, function(y) {10^(-y)} ) # this is what linearize(x) does

as.data.frame Convert a colorSpec Object to a data.frame

Description

convert a colorSpec object to a data.frame

Usage

## S3 method for class 'colorSpec'
as.data.frame( x, row.names=NULL, optional=FALSE, organization='auto', ... )

Arguments

x a colorSpec object

organization The organization of the returned data.frame, which can be 'row', 'col', or
'auto'. If 'auto', then 'row' or 'col' is selected automatically, see Details

row.names ignored

optional ignored

... extra arguments ignored

Details

If organization is 'auto', and the organization of x is 'df.row', then organization is set to
'row' and the returned data.frame has the spectra in the rows. Otherwise the returned data.frame
has the spectra in the columns.



atmosphere 9

Value

If the returned data.frame has the spectra in the rows, then the spectra are in a matrix in the last
column (with name spectra), and any existing extradata are also returned in the other columns.
The wavelengths are only present in character form, as the colnames of the matrix.
If the returned data.frame has the spectra in the columns, then the wavelengths are in the first
column, and the spectra are in the other columns.

See Also

as.matrix, extradata

atmosphere atmospheric transmittance along a horizontal path

Description

Calculate transmittance along a horizontal optical path in the atmosphere, as a function of length
(distance) and the molecular and aerosol properties. Because the path is horizontal, the atmospheric
properties are assumed to be constant on the path. Only molecular scattering is considered. There
is no modeling of molecular absorption; for visible wavelengths this is reasonable.

Usage

atmosTransmittance( distance, wavelength=380:720,
molecules=list(N=2.547305e25,n0=1.000293),
aerosols=list(metrange=25000,alpha=0.8,beta=0.0001) )

Arguments

distance the length of the optical path, in meters. It can also be a numeric vector of
lengths.

wavelength a vector of wavelengths, in nm, for the transmittance calculations

molecules a list of molecular properties, see Details. If this is NULL, then the molecular
transmittance is identically 1.

aerosols a list of aerosol properties, see Details. If this is NULL, then the aerosol trans-
mittance is identically 1.

Details

The list molecules has 2 parameters that describe the molecules in the atmosphere. N is the molec-
ular density of the atmosphere at sea level, in molecules/meter3. The given default is the density
at sea level. n0 is the refractive index of pure molecular air (with no aerosols). For the molecular at-
tenuation, the standard model for Rayleigh scattering is used, and there is no modeling of molecular
absorption.



10 atmosphere

The list aerosols has 3 parameters that describe the aerosols in the atmosphere. The standard
Angstrom aerosol attenuation model is:

attenuation(λ) = β ∗ (λ/λ0)
−α

α is the Angstrom exponent, and is dimensionless. attenuation and β have unit m−1. And
λ0=550nm.

metrange is the Meteorological Range of the atmosphere in meters, as defined by Koschmieder.
This is the distance at which the transmittance=0.02 at λ0. If metrange is not NULL (the default is
25000) then both α and β are calculated to achieve this desired metrange, and the supplied α and
β are ignored. α is calculated from metrange using the Kruse model, see Note. β is calculated so
that the product of molecular and aerosol transmittance yields the desired metrange. In fact:

β = −µ0 − log(0.02)/Vr

where µ0 is the molecular attenuation at λ0, and Vr is the meteorological range. For a log message
with the calculated values, execute cs.options(loglevel='INFO') before calling atmosTransmittance().

Value

atmosTransmittance() returns a colorSpec object with quantity equal to 'transmittance'.
There is a spectrum in the object for each value in the vector distance. The specnames are set to
sprintf("dist=%gm",distance).
The final transmittance is the product of the molecular transmittance and the aerosol transmittance.
If both molecules and aerosols are NULL, then the final transmittance is identically 1; the atmo-
sphere has become a vacuum.

Note

The Kruse model for α as a function of Vr is defined in 3 pieces. For 0 ≤ Vr < 6000, α =
0.585 ∗ (Vr/1000)

1/3. For 6000 ≤ Vr < 50000, α = 1.3. And for Vr ≥ 50000, α = 1.6. So α is
increasing, but not strictly, and not continuously. Vr is in meters. See Kruse and Kaushal.

The built-in object atmosphere2003 is transmittance along an optical path that is NOT horizontal,
and extends to outer space. This is much more complicated to calculate.

References

Angstrom, Anders. On the atmospheric transmission of sun radiation and on dust in the air. Geogr.
Ann., no. 2. 1929.

Kaushal, H. and Jain, V.K. and Kar, S. Free Space Optical Communication. Springer. 2017.

Koschmieder, Harald. Theorie der horizontalen Sichtweite. Beitrage zur Physik der Atmosphare.
1924. 12. pages 33-53.

P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan. Elements of Infrared Technology: Gen-
eration, Transmission, and Detection. J. Wiley & Sons, New York, 1962.

See Also

solar.irradiance, specnames



bandSpectra 11

Examples

trans = atmosTransmittance( c(5,10,15,20,25)*1000 ) # 5 distances with atmospheric defaults

# verify that transmittance[550]=0.02 at dist=25000
plot( trans, legend='bottomright', log='y' )

# repeat, but this time assign alpha and beta explicitly
trans = atmosTransmittance( c(5,10,15,20,25)*1000, aero=list(alpha=1,beta=0.0001) )

bandSpectra Compute Band-based Material Spectra, and Bands for Existing Mate-
rial Spectra

Description

A band-based material spectrum is a superimposition of bandpass filters, and (optionally) a band-
stop filter. The 2 functions in this topic convert a vector of numbers between 0 and 1 to a band
representation, and back again.

Usage

bandMaterial( lambda, wavelength=380:780 )

## S3 method for class 'colorSpec'
bandRepresentation( x )

Arguments

lambda a numeric Mx2 matrix with wavelength pairs in the rows, or a vector that can be
converted to such a matrix, by row. The two wavelengths in a row (the transition
wavelengths) define either a bandpass or bandstop filter, and all the rows are
superimposed to define the transmittance spectrum of the final material. If the 2
wavelengths are denoted by λ1 and λ2, and λ1 < λ2 then the filter is a bandpass
filter. If the 2 wavelengths are swapped, then the spectrum is "flipped" and is
a bandstop filter, and the band "wraps around" from long wavelengths to short.
There can be at most 1 bandstop filter in the matrix, otherwise it is an error.
The bands must be pairwise disjoint, otherwise it is an error. To get a material
with transmittance identically 0, set lambda to a 0x2 matrix. To get a material
with transmittance identically 1, set lambda to a 1x2 matrix with λ1 = β0 and
λ2 = βN , where N is the number of wavelengths. See vignette Convexity and
Transitions for the definition of β0 and βN and other mathematical details.
lambda can also be a list of such matrices, which are processed separately, see
Value.

wavelength a vector of wavelengths for the returned object

x a colorSpec object with type equal to 'material'



12 bind

Details

bandRepresentation() is a right-inverse of bandMaterial(), see Examples and the test script
test-bands.R. For more mathematical details, see the vignette Convexity and Transitions.

Value

bandMaterial() returns a colorSpec object with quantity equal to 'transmitance'. If lambda
is a matrix, then the object has 1 spectrum. If lambda is a list of matrices with length N, then the
object has N spectra.

bandRepresentation() returns a list of matrices with 2 columns. There is a matrix in the list for
each spectrum in x.

See Also

rectangularMaterial(), vignette Convexity and Transitions

Examples

# make a vector superimposing a bandpass and a bandstop filter, and of the proper length 401
vec = c( rep(1,100), 0.5, rep(0,40), .25, rep(1,50), 0.9, rep(0,100), 0.4, rep(1,107) )

# convert that vector to a colorSpec object, with a single spectrum
spec = colorSpec( vec, wavelength=380:780, quantity='transmittance', specnames='sample' )

# extract and print the 2 bands
lambda = bandRepresentation( spec ) ; print(lambda)

## $sample
## lambda1 lambda2
## BS 673.10 480.0
## BP1 521.25 572.4

# convert the 2 bands (the transition wavelengths) back to a vector of length 401
# and compare with the original vector
delta = vec - coredata( bandMaterial(lambda) )

range(delta)
## [1] -9.092727e-14 2.275957e-14

bind Combine colorSpec Objects

Description

Take a sequence of colorSpec objects and combine their spectra



bind 13

Usage

## S3 method for class 'colorSpec'
bind( ... )

Arguments

... colorSpec objects with the same wavelength and quantity, and with distinct
specnames (no duplicates)

Details

The organization of the returned object is the most complex of those in the inputs, where the
order of complexity is:

'matrix' < 'df.col' < 'df.row'

If the selected organization is 'df.row', the extradata is combined in a way that preserves all
the columns. Missing data is filled with NAs, analogous to rbind.fill().

The metadata of the returned object is copied from the first object in the input list.

Value

bind() returns a colorSpec object, or NULL in case of ERROR. If the bind is successful, the number
of spectra in the output object is the sum of the number of spectra in the input objects.

See Also

wavelength, quantity, specnames, organization, extradata, metadata, rbind.fill()

Examples

Rosco = readSpectra( system.file( 'extdata/objects/Rosco.txt', package='colorSpec' ) )
Rosco = resample( Rosco, wave=wavelength(Hoya) )
numSpectra(Hoya) # prints 4
numSpectra(Rosco) # prints 42

filters = bind( Hoya, Rosco )
numSpectra(filters) # prints 46

colnames( extradata(Hoya) )
## [1] "SAMPLE_NAME" "FresnelReflectance" "Thickness"

colnames( extradata(Rosco) )
## [1] "Model" "SampleID" "SAMPLE_NAME" "Substrate" "RefractiveIndex" "Thickness"

## The columns in common are "SAMPLE_NAME" and "Thickness"

colnames( extradata(filters) )
## [1] "FresnelReflectance" "Model" "RefractiveIndex" "SAMPLE_NAME"
## [5] "SampleID" "Substrate" "Thickness"



14 calibrate

##
## "SAMPLE_NAME" and "Thickness" are combined in the usual way
## The other columns are present, and missing data is filled with NAs

calibrate make a linear modification to a colorSpec responder

Description

make a linear modification to a colorSpec responder with M spectra, so a specific stimulus (a single
spectrum) creates a specific response (an M-vector). It is generalized form of white balance.
The options are complicated, but in all cases the returned object is multiply(x,gmat) where gmat
is an internally calculated MxM matrix - called the gain matrix. Stated another way, the spectra in
the output are linear combinations of spectra in the input x.
In case of ERROR, a message is logged and the original x is returned.

Usage

## S3 method for class 'colorSpec'
calibrate( x, stimulus=NULL, response=NULL, method=NULL )

Arguments

x a colorSpec responder with M spectra. The type must be 'responsivity.light'
or 'responsivity.material'.

stimulus a colorSpec object with a single spectrum, with type either 'light' or 'material'
to match x. The wavelength sequence of stimulus must be equal to that of x.
If stimulus is NULL, then an appropriate default is chosen, see Details.

response an M-vector, or a scalar which is then replicated to length M. Normally all en-
tries are not NA, but it is OK to have exactly one that is not NA. In this special
case, a single scaling factor is computed from that non-NA coordinate, and then
applied to all M coordinates; the method must be 'scaling'. This is useful for
the recommended method for calibration in ASTM E308-01 section 7.1.2. The
same type of scaling is also recommended method in CIE 15: Technical Report
section 7.1. In this case response=c(NA,100,NA) so the special coordinate is
the luminance Y. See the Examples below and the vignettes Viewing Object
Colors in a Gallery and The Effect of the Aging Human Lens on Color Vi-
sion.
All entries in response, that are not NA, must be positive.
If response is NULL, then an appropriate default may be chosen, see Details.

method an MxM adaptation matrix. method can also be 'scaling' and it is then set
to the MxM identity matrix, which scales each responsivity spectrum in x inde-
pendently.
If M=3, method can also be 'Bradford', 'Von Kries', 'MCAT02', or 'Bianco+Schettini',
and it is then set to the popular corresponding chromatic adaptation matrix. For



calibrate 15

these special matrices, the spectra in x are not scaled independently; there is
"cross-talk".
If method is NULL, then an appropriate default is chosen, see Details.

Details

If stimulus is NULL, it is set to illuminantE() or neutralMaterial() to match x.

If response is NULL and the response of x is electrical or action, then response is set to an
M-vector of all 1s. If response is NULL and the response of x is neural, then this is an ERROR
and the user is prompted to supply a specific response.

If method is NULL, its assignment is complicated.
If M=3 and the response of x is neural, and the specnames of x partially match c('x','y','z')
(case-insensitive), and none of the components of response are NA, then the neural response is
assumed to be human, and the method is set to 'Bradford'.
Otherwise method is set to 'scaling'.

Value

a colorSpec object equal to multiply(x,gmat) where gmat is an internally calculated MxM ma-
trix. The quantity() and wavelength() are preserved.
Note that gmat is not the same as the the MxM adaptation matrix. To inspect gmat execute
summary() on the returned object. If method is 'scaling' then gmat is diagonal and the diag-
onal entries are the M gain factors needed to achieve the calibration.
Useful data is attached as attribute "calibrate".

Note

Chromatic adaptation transforms, such as 'Bradford', do not belong in the realm of spectra, for this
is not really a spectral calculation. For more about this subject see the explanation in Digital Color
Management, Chapter 15 - Myths and Misconceptions. These sophisticated adaptation transforms
are provided in calibrate() because it is possible and convenient.

References

ASTM E308-01. Standard Practice for Computing the Colors of Objects by Using the CIE System.
2001.

CIE 15: Technical Report: Colorimetry, 3rd edition. CIE 15:2004.

Edward J. Giorgianni and Thomas E. Madden. Digital Color Management: Encoding Solutions.
2nd Edition John Wiley. 2009. Chapter 15 - Myths and Misconceptions.

See Also

is.regular(), multiply(), quantity(), wavelength(), colorSpec, summary(), illuminantE(),
neutralMaterial(), product()



16 canonicalOptimalColors

Examples

wave = 380:780

# make an art gallery illuminated by illuminant A, and with tristimulus XYZ as output
gallery = product( A.1nm, 'artwork', xyz1931.1nm, wave=wave )

# calibrate simplistically,
# so the perfect reflecting diffuser has the standard XYZ coordinates for Illuminant A
# using the convention that Y=100 (instead of Y=1)
A = 100 * spacesXYZ::standardXYZ('A')
A
## X Y Z
## A 109.85 100 35.585

gallery.cal1 = calibrate( gallery, response=A, method='scaling' )

# calibrate following the ASTM and CIE recommendation
gallery.cal2 = calibrate( gallery, response=c(NA,100,NA), method='scaling' )

# make the Perfect Reflecting Diffuser for testing
prd = neutralMaterial( 1, wave=wave ) ; specnames(prd) = 'PRD'

# compare responses to the PRD for gallery.cal1 and gallery.cal2
white.1 = product( prd, gallery.cal1 )
white.2 = product( prd, gallery.cal2 )
white.1 ; white.2 ; white.1 - white.2

## X Y Z
## PRD 109.85 100 35.585
## X Y Z
## PRD 109.8488 100 35.58151
## X Y Z
## PRD 0.001210456 -2.842171e-14 0.003489313

# make an RGB flatbead scanner from illuminant F11 and a Flea2 camera
scanner = product( subset(Fs.5nm,'F11'), 'paper', Flea2.RGB, wave='auto')
# adjust RGB gain factors (white balance) so the perfect reflecting diffuser yields RGB=(1,1,1)
scanner = calibrate( scanner )

# same flatbead scanner, but this time with some "white headroom"
scanner = product( subset(Fs.5nm,'F11'), 'paper', Flea2.RGB, wave='auto' )
scanner = calibrate( scanner, response=0.95 )
scanner

canonicalOptimalColors

compute the Canonical Optimal Colors



canonicalOptimalColors 17

Description

Consider a colorSpec object x with type equal to 'responsivity.material'. The set of all
possible material reflectance functions (or transmittance functions) is convex, closed, and bounded
(in any reasonable function space), and this implies that the set of all possible output responses
from x is also convex, closed, and bounded. The latter set is called the object-color solid or Rösch
Farbkörper for x. A color on the boundary of the object-color solid is called an optimal color
for x. The corresponding transmittance spectrum is called an optimal spectrum for x. The special
points W (the response to the perfect reflecting diffuser) and 0 (the response to the perfect absorbing
diffuser) are optimal.

Currently the function only works if the number of spectra in x is 3 (e.g. RGB or XYZ). In this case
the object-color solid is a zonohedron whose boundary is the union of parallelograms, which may
be coplanar. These parallelograms are indexed by distinct pairs of the wavelengths of x; if x has N
wavelengths, then there are N*(N-1) parallelograms. The center of each parallelogram is called a
canonical optimal color. Interestingly, the special points W and 0 are not canonical.

Usage

## S3 method for class 'colorSpec'
canonicalOptimalColors( x, lambda, spectral=FALSE )

Arguments

x a colorSpec object with type equal to 'responsivity.material' and 3 spec-
tra

lambda a numeric Mx2 matrix whose rows contain distinct pairs of wavelengths of x, or
a numeric vector that can be converted to such a matrix, by row. If any entry in
lambda is not a wavelength of x, it is an error.

spectral if TRUE, the function returns a colorSpec object with the optimal spectra, see
Value.

Details

The 3 responsivities are regarded not as continuous functions, but as step functions. This implies
that the color solid is a zonohedron. In the preprocessing phase the zonohedral representation is
calculated. The faces of the zonohedron are either parallelograms, or compound faces that can be
partitioned into parallelograms. The centers of all these parallelograms are the canonical optimal
colors.
The optimal spectra take value 1/2 at the 2 given wavelengths, and 0 or 1 elsewhere. If the 2
wavelengths are λ1 and λ2, and λ1 < λ2 then the spectrum is approximately a bandpass filter. If the
2 wavelengths are swapped, then the spectrum is "flipped" and is approximately a bandstop filter.

Value

If argument spectral=FALSE, canonicalOptimalColors() returns a data.frame with a row for
each row in lambda. The columns in the output are:

lambda the given matrix argument lambda



18 chop

optimal the computed optimal colors - an Mx3 matrix

transitions the number of transitions in the optimal spectrum, this is a positive even number

If rownames(lambda) is not NULL, they are copied to the row names of the output.

If argument spectral=TRUE, it returns a colorSpec object with quantity 'transmittance'. This
object contains the optimal spectra, and the above-mentioned data.frame can then be obtained by
applying extradata() to the returned object.

In case of global error, the function returns NULL.

References

Centore, Paul. A zonohedral approach to optimal colours. Color Research & Application. Vol.
38. No. 2. pp. 110-119. April 2013.

Logvinenko, A. D. An object-color space. Journal of Vision. 9(11):5, 1-23, (2009).
https://jov.arvojournals.org/article.aspx?articleid=2203976 doi:10.1167/9.11.5.

Schrödinger, E. (1920). Theorie der Pigmente von grösster Leuchtkraft. Annalen der Physik. 62,
603-622.

West, G. and M. H. Brill. Conditions under which Schrödinger object colors are optimal. Journal
of the Optical Society of America. 73. pp. 1223-1225. 1983.

See Also

probeOptimalColors(), bandRepresentation(), scanner.ACES, extradata(), type, vignette
Convexity and Transitions

Examples

wave = seq(400,700,by=5)
D50.eye = product( D50.5nm, 'material', xyz1931.1nm, wavelength=wave )
canonicalOptimalColors( D50.eye, c(500,600, 550,560, 580,585) )
## lambda.1 lambda.2 optimal.x optimal.y optimal.z transitions
## 1 500 600 47.02281830 80.07281030 4.33181530 2
## 2 550 560 5.18490614 10.09045773 0.06121505 2
## 3 580 585 26.91247649 21.49031008 0.03457904 6

chop chop spectra into low and high parts

Description

chop all spectra in a colorSpec object into low and high parts at a blending interval

Usage

## S3 method for class 'colorSpec'
chop( x, interval, adj=0.5 )



colorSpec 19

Arguments

x a colorSpec object

interval a numeric vector with length 2 giving the endpoints of the interval, in nm

adj a number in [0,1] defining weights of low and high parts over the interval

Details

For each spectrum, the low and high parts sum to the original spectrum. The low part vanishes on
the right of the interval, and the high part vanishes on the left.

Value

chop(x) returns a colorSpec object with twice the number of spectra in x and with organization
equal to 'matrix'. The names of the new spectra are formed by appending ".lo" and ".hi" to the
original spectrum names.

See Also

organization,

Examples

# chop blue butane flame into diatomic carbon and hydrocarbon parts
path = system.file( "extdata/sources/BlueFlame.txt", package="colorSpec" )
blueflame = readSpectra( path, seq(375,650,0.5) )
plot( chop( blueflame, interval=c(432,435), adj=0.8 ) )

# chop 'white' LED into blue and yellow parts
path = system.file( "extdata/sources/Gepe-G-2001-LED.sp", package="colorSpec" )
LED = readSpectra( path )
plot( chop( LED, c(470,495) ) )

colorSpec constructing and testing colorSpec Objects

Description

The function colorSpec() is the constructor for colorSpec objects.

is.colorSpec() tests whether an object is a valid colorSpec object.
as.colorSpec() converts other variables to a colorSpec object, and is designed to be overridden
by other packages.



20 colorSpec

Usage

colorSpec( data, wavelength, quantity='auto', organization='auto', specnames=NULL )

is.colorSpec(x)

## Default S3 method:
as.colorSpec( ... )

Arguments

data a vector or matrix of the spectrum values. In case data is a vector, there is
a single spectrum and the number of points in that spectrum is the length of
the vector. In case data is a matrix, the spectra are stored in the columns, so
the number of points in each spectrum is the number of rows in data, and the
number of spectra is the number of columns in data. It is OK for the matrix to
have only 0 or 1 column.

wavelength a numeric vector of wavelengths for all the spectra, in nm. The length of this
vector must be equal to NROW(data). The sequence must be increasing. The
wavelength vector can be changed after construction.

quantity a character string giving the quantity of all spectra in data; see quantity for a
list of possible values. In case of 'auto', a guess is made from the specnames.
The quantity can be changed after construction.

organization a character string giving the desired organization of the returned colorSpec ob-
ject. In case of 'auto', the organization is 'vector' or 'matrix' depend-
ing on data. Other possible organizations are 'df.col' or 'df.row'; see
organization for discussion of all 4 possible organizations. The organization
can be changed after construction.

specnames a character vector with length equal to the number of spectra, and with no du-
plicates. If specnames is NULL and data is a vector, then specnames is set to
deparse(substitute(data)). If specnames is NULL and data is a matrix,
then specnames is set to colnames(data). If specnames is still not a character
vector with the right length, or if there are duplicate names, then specnames is
set to 'S1', 'S2', ... with a warning message. The specnames vector can be
changed after construction.

x an R object to test for being a valid colorSpec object.

... arguments for use in other packages.

Details

Under the hood, a colorSpec object is either a vector, matrix, or data.frame. It is of S3 class
'colorSpec' with these extra attributes:

wavelength a numeric vector of wavelengths for all the spectra. If the organization of the object
is 'df.col', then this is absent.

quantity a character string that gives the physical quantity of all spectra, see quantity() for a
list of possible values.



computeADL 21

metadata a named list for user-defined data. The names 'path', 'header' and 'date' are already
reserved; see metadata().

step.wl step between adjacent wavelengths in nm. This is assigned only when the wavelengths
are regular; see is.regular().

specname only assigned when the organization is 'vector', in which case it is equal to the
single character string name of the single spectrum. Note that the word specname is singular.
Also see specnames().

And there are a few more attributes that exist only in special cases; see the colorSpec User Guide.

Value

colorSpec() returns a colorSpec object, or NULL in case of ERROR. Compare this function with
stats::ts().

is.colorSpec() returns TRUE or FALSE. It does more than check the class, and also checks
wavelength, quantity, and organization. If FALSE, it logs (at loglevel='DEBUG') the reason
that x is invalid.

as.colorSpec.default() issues an ERROR message and returns NULL

See Also

wavelength, quantity, organization, metadata, step.wl, specnames, is.regular, coredata

Examples

# make a synthetic Gaussian bandpass filter

center = 600
wave = 400:700
trans = exp( -(wave-center)^2 / 20^2 )

filter.bp = colorSpec( trans, wave, quantity='transmittance', specnames='myfilter' )

organization( filter.bp ) # returns: "vector"

# and now plot it
plot( filter.bp )

computeADL compute ADL coordinates by ray tracing

Description

Consider a colorSpec object x with type equal to responsivity.material. The set of all possible
material reflectance functions (or transmittance functions) is convex, closed, and bounded (in any
reasonable function space), and this implies that the set of all possible output responses from x is
also convex, closed, and bounded. The latter set is called the object-color solid or Rösch Farbkörper



22 computeADL

for x. A color on the boundary of the object-color solid is called an optimal color. The special points
W (the response to the perfect reflecting diffuser) and 0 are on the boundary of this set. The interior
of the line segment of neutrals joining 0 to W is in the interior of the object-color solid. It is natural
to parameterize this segment from 0 to 1 (from 0 to W). The solid is symmetrical about the neutral
gray midpoint G=W/2.

Now suppose that x has 3 spectra (3 responses) and consider a color response R not equal to G.
There is a ray based at G and passing through R that intersects the boundary of the object-color solid
at an optimal color B on the boundary with Logvinenko coordinates (δ, ω). If these 2 coordinates
are combined with α, where R = (1− α)G + αB, it yields the Logvinenko coordinates (α, δ, ω) of
R. These coordinates are also denoted by ADL; see References. A response is in the object-color
solid iff α ≤ 1. A response is optimal iff α = 1.

The coordinates of 0 are (α, δ, ω)=(1,0,0). The coordinates of W are (α, δ, ω)=(1,1,0). The coordi-
nates of G are undefined.

Usage

## S3 method for class 'colorSpec'
computeADL( x, response )

Arguments

x a colorSpec object with type equal to responsivity.material and 3 spectra

response a numeric Nx3 matrix with responses in the rows, or a numeric vector that can
be converted to such a matrix, by row.

Details

For each response, a ray is computed and the ray tracing is done by probeOptimalColors().

Value

computeADL() returns a data.frame with a row for each response. The columns in the data frame
are:

response the input response vector

ADL the computed ADL coordinates of the response vector

omega the reparameterized λ in the interval [0,1]; see References
lambda lambda.1 and lambda.2 at the 2 transitions, in nm. lambda.1 < lambda.2 =>

bandpass, and lambda.1 > lambda.2 => bandstop.

If an individual ray could not be traced, or if the optimal spectrum has more than 2 transitions, the
row contains NA in appropriate columns.
In case of global error, the function returns NULL.

WARNING

Since this function is really a simple wrapper around probeOptimalColors(), please see the per-
formance warnings there.



computeCCT 23

References

Logvinenko, A. D. An object-color space. Journal of Vision. 9(11):5, 1-23, (2009).
https://jov.arvojournals.org/article.aspx?articleid=2203976. doi:10.1167/9.11.5.

Godau, Christoph and Brian Funt. XYZ to ADL: Calculating Logvinenko’s Object Color Coordi-
nates. Proceedings Eighteenth IS&T Color Imaging Conference. San Antonio. Nov 2009.

See Also

type(), probeOptimalColors(), vignette Plotting Chromaticity Loci of Optimal Colors

Examples

D50.eye = product( D50.5nm, 'varmat', xyz1931.1nm, wave=seq(360,830,by=5) )
computeADL( D50.eye, c(30,50,70) )
## response.X response.Y response.Z ADL.alpha ADL.delta ADL.lambda omega
## 1 30 50 70 0.7371475 0.5384104 473.3594572 0.3008817

## lambda.1 lambda.2
## 427.2011 555.5261

## since alpha < 1, XYZ=c(30,50,70) is *inside* the object-color solid of D50.eye

computeCCT Compute Correlated Color Temperature (CCT) of Light Spectra

Description

Compute the CCT, in K, of a colorSpec object with type equal to 'light'

Usage

## S3 method for class 'colorSpec'
computeCCT( x, isotherms='robertson', locus='robertson', strict=FALSE )

Arguments

x an colorSpec R object with type equal to 'light', and M spectra

isotherms A character vector whose elements match one of the available isotherm fam-
ilies: 'robertson', 'mccamy', and 'native'. Matching is partial and case-
insensitive. When more than one family is given, a matrix is returned, see Value.
When isotherms='native' the isotherms are defined implicitly as lines per-
pendicular to the locus, see Details in spacesXYZ::CCTfromXYZ(). The char-
acter NA (NA_character_) is taken as a synonym for 'native'.

locus valid values are 'robertson' and 'precision', see above. Matching is partial
and case-insensitive.



24 computeCCT

strict The CIE considers the CCT of a chromaticity uv to be meaningful only if the
distance from uv to the Planckian locus is less than or equal to 0.05 [in CIE
UCS 1960]. If strict=FALSE, then this condition is ignored. Otherwise, the
distance is computed along the corresponding isotherm, and if it exceeds 0.05
the returned CCT is set to NA.

Details

In computeCCT(), for each spectrum, XYZ is computed using xyz1931.1nm, and the result passed
to spacesXYZ::CCTfromXYZ(). If the quantity of x is 'photons' (actinometric) each spectrum
is converted to 'energy' (radiometric) on the fly.

Value

computeCCT() returns a numeric vector of length M, where M is the number of spectra in x. The
vector’s names is set to specnames(x).
If the type of x is not 'light', then a warning is issued and all values are NA_real_.

References

McCamy, C. S. Correlated color temperature as an explicit function of chromaticity coordinates.
Color Research & Application. Volume 17. Issue 2. pages 142-144. April 1992.

Robertson, A. R. Computation of correlated color temperature and distribution temperature. Journal
of the Optical Society of America. 58. pp. 1528-1535 (1968).

Wyszecki, Günther and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data
and Formulae, Second Edition. John Wiley & Sons, 1982. Table 1(3.11). pp. 227-228.

See Also

type(), quantity(), xyz1931, planckSpectra(), specnames(), spacesXYZ::CCTfromXYZ()

Examples

computeCCT( D65.1nm ) # returns 6502.068
computeCCT( D65.1nm, isotherms='native' ) # returns 6503.323
computeCCT( A.1nm ) # returns 2855.656
computeCCT( A.1nm, isotherms='native' ) # returns 2855.662
computeCCT( A.1nm, isotherms='mccamy' ) # returns 2857.188

moon = readSpectra( system.file( "extdata/sources/moonlight.txt", package='colorSpec' ) )
computeCCT( moon ) # returns 4482.371



computeCRI 25

computeCRI Compute Color Rendering Index (CRI) of Light Spectra

Description

Compute the CIE 1974 color rendering index (CRI) of a light spectrum, called the the test illumi-
nant.
From the given spectrum a reference illuminant is selected with the same CCT (Correlated Color
Temperature). A selected set of 8 color samples is rendered in XYZ (1931) with both illuminants
and 8 color differences are computed in a special CIEUVW color space. For each color difference
a CRI is computed, where 100 is a perfect color match. The final CRI is the average of these 8 CRI
values.

Usage

## S3 method for class 'colorSpec'
computeCRI( x, adapt=TRUE, attach=FALSE, tol=5.4e-3 )

Arguments

x an colorSpec R object with type equal to 'light', and exactly 1 spectrum

adapt if TRUE, then a special chromatic adaption is performed, see Details

attach if TRUE, then a large list of intermediate calculations is attached to the returned
number, as attribute data. This attached list includes data for all special 14 color
samples, although the last 6 do not affect the returned CRI.

tol for the CRI to be meaningful the chromaticities of the test and reference illu-
minants must be sufficiently close in the CIE 1960 uniform chromaticity space.
If the tolerance is exceeded, the function returns NA. The default tol=5.4e-3 is
the one recommended by the CIE, but the argument allows the user to override
it.

Details

The CCT of x is computed by computeCCT() with default options.
If adapt is TRUE the 8 test uv points are chromatically adapted from the test illuminant to the
reference illuminant using a special von Kries type transformation; see Oleari and Wikipedia. The
test UVW values are computed relative to the reference illuminant.
If adapt is FALSE the 8 test uv points are not chromatically adapted, and the test UVW values are
computed relative to the test illuminant.

Value

computeCRI() returns a single number ≤ 100. In case of ERROR it returns NA. If attach is TRUE
a large list of intermediate calculations is attached to the returned number.



26 computeSSI

Source

The test color reflectance spectra are taken from:
http://www.lrc.rpi.edu/programs/nlpip/lightinganswers/lightsources/scripts/NLPIP_LightSourceColor_Script.m

References

Oleari, Claudio, Gabriele Simone. Standard Colorimetry: Definitions, Algorithms and Soft-
ware. John Wiley. 2016. pp. 465-470.

Günther Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data
and Formulae, Second Edition. John Wiley & Sons, 1982. Table 1(3.11). p. 828.

Wikipedia. Color rendering index. https://en.wikipedia.org/wiki/Color_rendering_index

Hunt, R. W. G. and M. R. Pointer. Measuring Colour. 4th edition. John Wiley & Sons. 2011.
Appendix 7.

See Also

type, xyz1931, computeCCT

Examples

computeCRI( subset(Fs.5nm,'F2') ) # returns 64.15195
computeCRI( subset(Fs.5nm,'F4') ) # returns 51.36348

computeSSI Compute the Spectrum Similarity Index of light spectra

Description

Compute the Spectrum Similarity Index (SSI), an index between 0 and 100, of a colorSpec object
with type equal to 'light'. It compares a test spectrum with a reference spectrum (an ideal). The
value 100 means a perfect match to the reference, and a smaller value mean a poorer match (similar
to CRI). Only values in the interval [375,675] nm are used; for details see Holm.

Usage

## S3 method for class 'colorSpec'
computeSSI( x, reference=NULL, digits=0, isotherms='mccamy', locus='robertson' )

Arguments

x a colorSpec object with type equal to 'light', and M test spectra

reference a colorSpec object with type equal to 'light', and either 1 or M reference
spectra. reference can also be NULL (the default), which means to generate
each reference spectrum from the corresponding test spectrum.

https://en.wikipedia.org/wiki/Color_rendering_index


computeSSI 27

digits the number of digits after the decimal point in the returned vector. According to
Holm the output should be rounded to the nearest integer, which corresponds to
digits=0. To return full precision, set digits=Inf.

isotherms this is only used when reference=NULL. It is passed to computeCCT() in order
to compute the CCT of each test spectrum.

locus this is only used when reference=NULL. It is passed to computeCCT() in order
to compute the CCT of each test spectrum.

Details

If reference contains a single spectrum, then each test spectrum is compared to that one reference
spectrum. If reference contains M spectra, then the i’th test spectrum is compared to the i’th
reference spectrum.

If reference=NULL then for each test spectrum the CCT is computed and used to compute a refer-
ence spectrum with the same CCT. It is either a Planckian (black-body) or daylight illuminant, see
Holm for details. The test spectrum and auto-computed reference spectrum are then compared.

Value

computeSSI() returns a numeric vector of length M, where M is the number of spectra in x. The
vector’s names is set from specnames(x) and a compact code for the corresponding reference
spectrum.

If the type of x is not 'light', or reference is not valid, then the function returns NULL.

References

J. Holm and T. Maier and P. Debevec and C. LeGendre and J. Pines and J. Erland and G. Joblove and
S. Dyer and B. Sloan and J. di Gennaro and D. Sherlock. A Cinematographic Spectral Similarity
Index. SMPTE 2016 Annual Technical Conference and Exhibition. pp. 1-36. (2016).

See Also

type(), computeCCT(), planckSpectra(), daylightSpectra(), specnames()

Examples

computeSSI( planckSpectra( 1000*(2:6) ) )
## P2000_SSI[2027K] P3000_SSI[3057K] P4000_SSI[D4063] P5000_SSI[D5061] P6000_SSI[D6063]
## 99 98 93 92 92



28 convolvewith

convolvewith Convolve each spectrum in a colorSpec object with a kernel

Description

This function convolves each spectrum in a colorSpec object with a kernel of odd length. Its pri-
mary purpose is to correct raw spectrometer data (with positive instrumental bandwidth) to have
bandwidth=0. Two popular correction kernels for this, with lengths 3 and 5, are built-in options,
see Details.

Usage

## S3 method for class 'colorSpec'
convolvewith( x, coeff )

Arguments

x a colorSpec object with N wavelengths

coeff a convolution kernel of odd length. The center entry of this vector is taken as
index 0 in the convolution.
coeff can also be the string 'SS3' which means to apply the Stearns&Stearns
bandwidth correction kernel coeff=c(-1,14,-1)/12, see Details.
coeff can also be the string 'SS5' which means to apply the Stearns&Stearns
bandwidth correction kernel coeff=c(1,-12,120,-12,1)/98, see Details.

Details

The built-in kernels, 'SS3' and 'SS5', were derived by Stearns & Stearns under specific hypotheses
on the spectrometer profile, bandpass, and pitch; see References.
Missing values at both ends are filled by copying from the nearest valid value.
The function creates a function calling stats::filter() and passes that function to applyspec().

Value

a colorSpec object with the same dimensions, wavelength, quantity, and organization. If
coeff is invalid it is an ERROR and convolvewith() returns NULL.

References

Stearns, E.I., Stearns R.E. An example of a method for correction radiance data for bandpass error.
Color Research and Application. 13-4. 257-259. 1988.

Schanda, Janos. CIE Colorimetry, in Colorimetry: Understanding the CIE System. Wiley Inter-
science. 2007. p. 124.

Oleari, Claudio, Gabriele Simone. Standard Colorimetry: Definitions, Algorithms and Software.
John Wiley. 2016. p. 309.



coredata 29

See Also

quantity, wavelength, linearize, applyspec, organization

coredata Extract the Core Data of a colorSpec Object

Description

functions for extracting the core data contained in a colorSpec object.

Usage

## S3 method for class 'colorSpec'
coredata( x, forcemat=FALSE )

## S3 method for class 'colorSpec'
as.matrix( x, ... )

Arguments

x a colorSpec object

forcemat if x has only 1 spectrum, return a matrix with 1 column instead of a vector

... extra arguments ignored

Value

coredata If x has organization equal to 'vector' then it returns x, unless forcemat is
TRUE when it returns x as a matrix with 1 column.
If x has any other organization then it returns a matrix with spectra in the
columns. All of the colorSpec attributes are stripped except the column names,
and the row names are set to as.character(wavelength(x)).

as.matrix a wrapper for coredata with forcemat=TRUE

See Also

organization



30 cs.options

cs.options Functions to set and retrieve colorSpec package options

Description

colorSpec has a few options. The options are stored in the R global list and they are:

colorSpec.loglevel, colorSpec.logformat, and colorSpec.stoponerror

For details on what they do see logging.

They can be set using the built-in function options(). When R starts up, an option can be set using
a call to options() in the file Rprofile.site. If colorSpec is later loaded, the value of the option
will not be changed. If an option has not been assigned, then it is created with a default value.

The function cs.options() makes setting the options a little easier in a few ways:

• it automatically prepends the string 'colorSpec.'

• partial matching of the option name is enabled

• a warning is issued when the option value has the wrong type

Usage

cs.options( ... )

Arguments

... named arguments are set; unnamed arguments are ignored with a warning. See
Examples.

Value

returns a list with all the colorSpec options.

See Also

logging, options

Examples

cs.options( loglevel="DEBUG", stop=FALSE ) # 'stop' partially matches 'stoponerror'
cs.options( stop='TRUE' ) # warns that value has the wrong type
cs.options( stop=FALSE, "DEBUG" ) # warns that the 2nd argument has no name
cs.options( loglevel="WARN" ) # back to default



D50 31

D50 Standard Illuminant D50 (1964)

Description

D50.5nm standard Illuminant D50, from 300 to 830 nm at 5 nm intervals.

Format

A colorSpec object organized as a vector, with 107 data points and specnames equal to 'D50'.

Details

This spectrum is not copied from a table from a CIE publication, though it does match such a
table. It is computed using the function daylightSpectra() by following the special CIE recipe
given in the References. The temperature is set to (14388/14380) * 5000 = 5002.781 Kelvin. The
coefficients of the daylight components S0, S1, and S2 are rounded to 3 decimal places. This linear
combination is computed at 10nm intervals and then linearly interpolated to 5nm intervals. The
result is normalized to value 1 at 560nm (instead of the usual 100), and finally rounded to 5 decimal
places. See Examples.

References

Günther Wyszecki and W.S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982. Table I(3.3.4) pp. 754-758

CIE 15: Technical Report: Colorimetry, 3rd edition. CIE 15:2004. Table T.1, pp 30-32, and Note 5
on page 69.

Schanda, Janos. CIE Colorimetry, in Colorimetry: Understanding the CIE System. Wiley Inter-
science. 2007. p. 42.

See Also

ABC , D65 , daylightSpectra

Examples

# the CIE recipe for computing D50.5nm
correction = 14388 / 14380 # note 5, page 69 in CIE 15:2004
D50.10nm = daylightSpectra( correction*5000, wavelength=seq(300,830,by=10), roundMs=TRUE )
D50.5nm = resample( D50.10nm, seq(300,830,by=5), method='linear' )
D50.5nm = round( D50.5nm, 5 )

summary( D50.5nm )
white.point = product( D50.5nm, xyz1931.1nm, wave='auto' )



32 daylight

D65 Standard Illuminant D65 (1964)

Description

D65.1nm standard Illuminant D65, 300 to 830 nm at 1 nm intervals
D65.5nm standard Illuminant D65, 380 to 780 nm at 5 nm intervals

Format

Each is a colorSpec object organized as a vector, with specnames equal to 'D65'.

Details

Both of these have been divided by 100, to make the values at 560nm equal to 1 instead of 100.

Source

http://www.cvrl.org

References

Günther Wyszecki and W.S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982. Table I(3.3.4) pp. 754-758

ASTM E 308-01. Standard Practice for Computing the Colors of Objects by Using the CIE System.
Table 3. pages 3-4.

See Also

ABC, D50, daylightSpectra , daylight

Examples

summary( D65.1nm )
white.point = product( D65.1nm, xyz1931.1nm, wave='auto' )

daylight Standard Daylight Components

Description

http://www.cvrl.org


daylight 33

daylight1964 spectral components S0, S1, S2; from 300 to 830 nm at 5 nm intervals
daylight2013 smoothed spectral components S0, S1, S2; from 300 to 830 nm at 1 nm intervals

Format

Each is a colorSpec object organized as a matrix with 3 columns

S0 component 0, the mean power spectrum
S1 component 1, the 1st characteristic spectrum
S2 component 2, the 2nd characteristic spectrum

Source

http://www.cie.co.at/publ/abst/datatables15_2004/CIE_sel_colorimetric_tables.xls

http://vision.vein.hu/~schanda/CIE%20TC1-74/

References

Günther Wyszecki and W.S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982. Table V(3.3.4) p. 762.

Smoothing spectral power distribution of daylights. Zsolt Kosztyan and Janos Schanda. Color
Research & Application. Volume 38, Issue 5, pages 316-321, October 2013.

CIE 15: Technical Report: Colorimetry, 3rd edition. CIE 15:2004. Table T.2, pp 33-34

JUDD, D.B., MACADAM, D.L. and WYSZECKI, G., with the collaboration of BUDDE, H.W,
CONDIT, H.R, HENDERSON, S.T, and SIMONDS, J.L. Spectral distribution of typical daylight
as a function of correlated color temperature. J Opt. Soc. Am. 54, 1031-1040, 1964.

Zsolt Kosztyan and Janos Schanda. Smoothing spectral power distribution of daylights. Color
Research & Application. Volume 38, Issue 5, pages 316-321, October 2013.

See Also

D65, D50, daylightSpectra

Examples

summary( daylight1964 )
day1964 = daylightSpectra( c(5000,6500), comp=daylight1964 )
day2013 = daylightSpectra( c(5000,6500), comp=daylight2013 )

plot( day1964, col='black' )
plot( day2013, col='black', add=TRUE )



34 DisplayRGB

DisplayRGB Compute Display RGB from Linear RGB

Description

All RGB displays have a non-linear "gamma function" of some sort. This function converts from
linear RGB to an RGB appropriate for the gamma function of the display; which is also called the
electro-optical conversion function (EOCF).

Usage

DisplayRGBfromLinearRGB( RGB, gamma='sRGB' )

Arguments

RGB linear RGB values organized as a vector or matrix of any size; all 3 channels are
treated the same way so size does not matter

gamma either the string 'sRGB' or a positive number giving the gamma of the display.

Value

The function first clamps the input RGB to the interval [0,1]. If gamma='sRGB' (not case-sensitive) it
then maps [0,1] to [0,1] using the special piecewise-defined sRGB function, see Wikipedia. In case
gamma is a positive number, the function raises all values to the power 1/gamma. The dimensions
and names of the input are copied to the output.
In case of error, the function returns the clamped input values.

WARNING

This function is deprecated. New software should use spacesRGB::SignalRGBfromLinearRGB()
instead.

Source

Wikipedia. sRGB. https://en.wikipedia.org/wiki/SRGB

See Also

RGBfromXYZ

Examples

DisplayRGBfromLinearRGB( c(0.2, 0.5) )
# [1] 0.4845292 0.7353570 # this is display sRGB, in [0,1]

DisplayRGBfromLinearRGB( c(-0.1, 0.2, 0.5, 1), 2.2 )
# [1] 0.0000000 0.4811565 0.7297401 1.0000000 # gamma=2.2

https://en.wikipedia.org/wiki/SRGB


emulate 35

x = seq( 0, 1, len=101)
plot( x, DisplayRGBfromLinearRGB(x), type='l' )

emulate modify a colorSpec responder to emulate (approximate) another re-
sponder

Description

The two possible modifications are:

• pre-multiplication by a transmitting filter

• post-multiplication by a matrix

Both of these are optional. If neither of these modifications is enabled, the original x is returned.

Usage

## S3 method for class 'colorSpec'
emulate( x, y, filter=FALSE, matrix=TRUE )

Arguments

x a colorSpec responder with M spectra, to be modified. The type must be
'responsivity.light' or 'responsivity.material'

y a colorSpec responder with N spectra, to be emulated by a modified x. It must
have the same type and wavelength vector as x

filter enable filter pre-multiplication.

matrix enable matrix post-multiplication. If matrix=TRUE then the computed matrix A
is MxN.

Details

If filter=FALSE and matrix=TRUE then the returned value is multiply(x,A), where the matrix A
is computed to minimize the difference with y, in the least squares sense (Frobenius matrix norm).
The function ginv() is used here.

If filter=TRUE and matrix=FALSE then the returned value is product(filter,x), where the
object filter is computed to minimize the difference with y, in the least squares sense (Frobenius
matrix norm). This calculation is fairly straightforward, but requires that the responsivity of x does
not vanish at any wavelength. It also requires that M=N. The computed filter may be unrealistic, i.e.
the transmittance may be > 1. If this happens a WARN message is issued.

If filter=TRUE and matrix=TRUE then the returned value is product(filter,multiply(x,A)),
where (filter,A) are chosen with the above minimization criterion. If N=1 then we must have



36 extradata

M=1 as well; the calculation is trivial and the emulation is exact. If N ≥ 2, the calculation is iterative
- solving alternatively for filter and A until convergence. The function ginv() is used on each
iteration. This is a bilinear optimization. If convergence fails, it is an error and the function returns
NULL. If convergence succeeds, there is 1 degree of freedom in the (filter,A) pair. If one is scaled
by a positive constant, the other can be scaled by the inverse, and the returned object is the same.
The filter is scaled so the maximum transmittance is 1.

If filter=FALSE and matrix=FALSE then the original x is returned, with a WARN message.

Value

a colorSpec object close to y, as in Details. The quantity is the same as y. The specnames() are
the same as those of y, except that ".em" is appended to each one. The function attaches attribute
"emulate", whose value is a list containing filter and/or A as appropriate.

Examples

see the vignette Emulation of one Camera by another Camera

See Also

wavelength, type, quantity, multiply, product, specnames

extradata extradata of a colorSpec object

Description

Retrieve or set the extradata of a colorSpec object.

Usage

## S3 method for class 'colorSpec'
extradata(x)

## S3 replacement method for class 'colorSpec'
extradata(x,add=FALSE) <- value

Arguments

x a colorSpec object with M spectra

value a data.frame with M rows. It is OK for value to have 0 columns, and value
can also be NULL; see add.

add If add is FALSE, then any existing extradata is discarded and replaced by value,
except when value is NULL when x is left with no extradata.
If add is TRUE, then value is appended to the existing extradata, except when
value is NULL when x is left unchanged.



F96T12 37

Details

If the organization of x is not 'df.row', then extradata cannot be stored in x and the assignment
is ignored, with a warning. First change the organization to 'df.row', and then assign the
extradata.

If the organization of x is 'df.row', but value does not have the right number of rows, the as-
signment is ignored, with a warning.

Value

extradata(x) returns a data.frame with M rows, where M is the number of spectra in x. The
rownames are set to the specnames of x. If there is no extra data then the number of columns in this
data.frame is 0.

Note

Do not confuse extradata and metadata.
metadata is unstructured data that is attached to the entire colorSpec object. extradata is struc-
tured data, with a row of data for each spectrum in the object.

See Also

metadata, organization

F96T12 Photon Irradiance of F96T12 Fluorescent Bulb

Description

F96T12
Sylvania F96T12 CW/VHO 215-Watt fluorescent bulb photon irradiance, measured with a LI-COR
LI-1800 spectroradiometer, from 300 to 900 nm at 1 nm intervals.

Format

A colorSpec object organized as a vector, with 601 data points and specnames equal to 'F96T12'.

Details

The unit is (µmole of photons)∗sec−1 ∗m−2 ∗ nm−1.

Source

Pedro J. Aphalo. https://www.mv.helsinki.fi/home/aphalo/photobio/lamps.html

See Also

ABC , D65 , daylightSpectra

https://www.mv.helsinki.fi/home/aphalo/photobio/lamps.html


38 Flea2.RGB

Examples

sum( F96T12 )
# [1] 320.1132 photon irradiance, (micromoles of photons)*m^{-2}

sum( radiometric(F96T12) )
# [1] 68.91819 irradiance, watts*m^{-2}

Flea2.RGB Flea2 Camera FL2-14S3C from Point Grey

Description

Flea2.RGB an RGB responder to light, from 360 to 800 nm at 10 nm intervals

Format

A colorSpec object with quantity equal to 'energy->electrical' and 3 spectra: Red, Green,
and Blue.

Details

This data is read from the file Flea2-spectral.txt which was digitized from the plot in Flea2-
spectral.png.

Source

https://ptgreycamera.com/product/camera/flir/flea2/firewireb-flea2/fl2-14s3c-c/

See Also

quantity, vignette Blue Flame and Green Comet

Examples

# Make a scanner from a tungsten source and a Flea2 camera
Flea2.scanner = product( A.1nm, "VARMATERIAL", Flea2.RGB, wavelength=420:680 )
Flea2.scanner = calibrate( Flea2.scanner )

https://ptgreycamera.com/product/camera/flir/flea2/firewireb-flea2/fl2-14s3c-c/


Fluorescents 39

Fluorescents Standard series F Illuminants F1, F2, F3, F4, F5, F6, F7, F8, F9,
F10, F11, and F12

Description

Fs.5nm contains 12 CIE Fluorescent Illuminants, from 380 to 780 nm, at 5nm intervals.

Format

Fs.5nm is a colorSpec object with 12 spectra. It is organized as a data frame with quantity equal
to "energy".

Note

The series F illuminants do not seem to be normalized in a consistent way.

Source

http://www.rit-mcsl.org/UsefulData/Fluorescents.htm

See Also

ABC, D50, D65

Examples

# plot only F4
plot( subset(Fs.5nm,"F4") )

HigherPasserines Cone Fundamentals for the Higher Passerines

Description

HigherPasserines Tetrachromatic Cone Fundamentals of Higher Passerine Birds

http://www.rit-mcsl.org/UsefulData/Fluorescents.htm


40 Hoya

Format

A colorSpec object organized as a matrix with the 4 spectra:

UV the UV wavelength responsivity
Short the short wavelength responsivity
Medium the medium wavelength responsivity
Long the long wavelength responsivity

The wavelength is from 300 to 700 nm, at 1nm intervals.

Source

https://onlinelibrary.wiley.com/doi/full/10.1111/j.1095-8312.2005.00540.x

References

Endler & Mielke. Comparing entire colour patterns as birds see them. Biological Journal of the
Linnean Society. Volume 86, Issue 4, pages 405-431, December 2005. Original Name of File:
BIJ_540_Endler_Mielke_OnlineAppendix.txt.

See Also

lms2000

Examples

summary(HigherPasserines)

Hoya standard Hoya filters

Description

Hoya 4 standard Hoya filters; from 300 to 750 nm at 10nm intervals.



interpolate 41

Format

A colorSpec object with quantity equal to 'transmittance' and 4 spectra:

R-60 long-pass red filter with cutoff about 600nm
G-533 band-pass green filter with peak about 533nm
B-440 band-pass blue filter with peak about 440nm
LB-120 Light-balancing Blue filter with mired shift equal to -120

Source

https://hoyaoptics.com/

See Also

quantity

Examples

# compute response of ACES scanner to the Hoya filters
product( Hoya, scanner.ACES, wave='auto' )

interpolate interpolate spectra

Description

interpolate along a 1-parameter path of spectra

Usage

## S3 method for class 'colorSpec'
interpolate( x, p, pout, pname=deparse(substitute(p)) )

Arguments

x a colorSpec object, typically with multiple spectra

p a numeric vector with length(p)==numSpectra(x). The value p[i] is associ-
ated with the i’th spectrum in x.

pout a numeric vector of parameter values at which interpolation of the spectra in x
take place

pname the name of the parameter p

https://hoyaoptics.com/


42 invert

Details

Each spectrum in x can be thought of as a point in a high-dimensional space, and each point
has a real-valued parameter associated with it. The function performs natural spline interpola-
tion on these points, one coordinate at a time. For each wavelength value it calls spline with
method='natural'.

Value

interpolate(x) returns a colorSpec object y with a spectrum for each value in pout. The orga-
nization of y is 'df.row', and extradata(y) has a single column which is a copy of pout. The
name of the column is pname. The names in specnames(y) are <pname>=<pout>. Other properties
of y, e.g. wavelength, quantity, ..., are the same as x.
In case of ERROR, the function returns NULL.

See Also

organization, wavelength, extradata, spline

Examples

path = system.file( "extdata/stains/PhenolRed-Fig7.txt", package="colorSpec" )
wave = 350:650
phenolred = readSpectra( path, wavelength=wave )
pH = as.numeric( sub( '[^0-9]+([0-9]+)$', '\\1', specnames(phenolred) ) )
pHvec = seq(min(pH),max(pH),by=0.05)
phenolinterp = interpolate( phenolred, pH, pHvec )

invert estimate spectra from responses, effectively inverting the operator
from spectrum to response

Description

Given a light responder (e.g. an eye or a camera), two light spectra that produce the same response
from the responder are called metamers for that responder. Similarly, given a material responder
(e.g. a scanner), two reflectance spectra that produce the same response from the responder are
called metamers for that responder.

For a given responder and response, there are typically infinitely many metamers. The set of all
of them is often called the metameric suite. The goal of the function invert() is to calculate a
"good" metamer in the "suite". Koenderink calls this topic inverse colorimetry. In the case that
the estimated spectrum is a reflectance spectrum, the topic is often called reflectance estimation or
reflectance recovery, see Bianco.

The centroid method, which is the default and the featured method in this package, computes the
centroid of the set of all the metamers (if any). The centroid is computed in an infinite-dimensional
context and is expounded further in Davis.

The Hawkyard method, see Hawkyard and Bianco, has been around a long time. The centroid and
Hawkyard methods have similarities, e.g. both are low-dimensional with the number of variables



invert 43

equal to the number of responses (usually 3). The Hawkyard method is very fast, but has a key
problem, see below.

The Transformed Least Slope Squared (TLSS) method was developed by Scott Burns, see Refer-
ences. This is my name for it, not his. What I call TLLS is actually is a combination of Burns’
LHTSS and LLSS methods; the one that invert() chooses depends on type(x), see below. Both
of these are high-dimensional, with the number of variables equal to #(responses) + #(wavelengths).

The first argument to invert() is the responder x, and the second is the matrix response of re-
sponses (e.g. XYZs or RGBs).

The goal is to return a "good" spectrum for each response so that:

product( invert(x,response), x ) ∼= response

The error is returned as column estim.precis, see below.

First consider the case where x has type type='responsivity.material'. The goal is to compute
a reflectance spectra. All the methods will fail if the response is on the object-color boundary (an
optimal color) or outside the boundary. They may also fail if the response is inside the object-color
solid (the Rösch Farbkörper) and very close to the boundary.
The centroid method solves a non-linear system that contains a Langevin-function-based squashing
function, see Davis for details. When successful it always returns a feasible spectrum with small
estim.precis.
The Hawkyard method is linear and very fast, but in raw form it may return a non-feasible re-
flectance spectrum. In this case invert() simply clamps to the interval [0,1] and so estim.precis
can be large.
The TLSS method solves a non-linear system that contains the squashing function (tanh(z) +
1)/2, see Burns for details. When successful it always returns a feasible spectrum with small
estim.precis.

Now consider the case where x has type='responsivity.light'. The goal is to compute the
spectrum of a light source. All the methods will fail if chromaticity of the response is on the
boundary of the inverted-U (assuming x models the human eye) or outside the boundary. They may
also fail if the response is inside the inverted-U and very close to the boundary.
The centroid method works on a relatively small range of chromaticities; it will fail if the response
is too far from the response to Illuminant E. See Davis for the details. When successful it always
returns an everywhere positive spectrum with small estim.precis. This method has the desirable
property that if the response is multiplied by a positive number, the computed spectrum is multiplied
by that same number.
The Hawkyard method does not work in this case.
The TLSS method solves a non-linear system that contains the squashing function exp(z), see
Burns for the details. When successful it always returns an everywhere positive spectrum with
small estim.precis. This method succeeds on a larger set of chromaticities than the centroid
method. It also has the desirable scaling multiplication property mentioned above.

The centroid and Hawkyard methods have an equalization option, which is controlled by the argu-
ment alpha and is enabled by default, see below. When enabled, if the response comes from a con-
stant spectrum (a perfectly neutral gray material, or a multiple of Illuminant E), then the computed
spectrum is that same constant spectrum (up to numerical precision). I call this the neutral-exact
property. Equalization is a complicated mechanism, for details see Davis. For the TLSS method,
the neutral-exact property is intrinsic, and alpha is ignored.



44 invert

NOTE: If the responder has only one output channel (e.g. a monochrome camera) and equalization
is enabled, then all responses are inverted to a constant spectrum. This may or may not be desirable.

Usage

## S3 method for class 'colorSpec'
invert( x, response, method='centroid', alpha=1 )

Arguments

x a colorSpec object with type(x) = 'responsivity.material' or 'responsivity.light'
and M responsivities. The wavelengths must be regular (equidistant).

response a numeric NxM matrix, or a numeric vector that can be converted to such matrix,
by row. The N responses are contained in the rows. The rownames(response)
are copied to the output specnames.

method either 'centroid' or 'Hawkyard' or 'TLSS'. 'Hawkyard' is only valid when
type(x) is 'responsivity.material'. Matching is partial and case-insensitive.

alpha a vector of M weighting coefficients, or a single number that is replicated to
length M. When method='centroid', alpha is used for equalizing the respon-
sivities, which is recommended. For alpha to be valid, the linear combination of
the M responsitivies, with coefficients alpha, must be positive. To disable equal-
ization (not recommended) and use the original responsivities, set alpha=NULL.
Similarly, when method='Hawkyard', alpha is used for equalizing the respon-
sivities, which is also recommended. When method='TLSS', alpha is ignored.

Details

For method='centroid' the function calls the non-linear root-finder rootSolve::multiroot(),
which is general purpose and "full Newton".

For method='Hawkyard' the function solves a linear system by inverting a small matrix (#[re-
sponses] x #[responses]). The spectra are then clamped to [0,1].

For method='TLSS' the function solves a constrained least-squares problem using Lagrange mul-
tipliers. A critical point is found using a "full Newton" iteration. The original MATLAB code is
posted at Burns, and was ported from MATLAB to R with only trivial changes. When computing a
reflectance spectrum, the Hawkyard method is used for the initial guess, after little extra clamping.
This improved guess cuts the number of iterations substantially, and the extra computation time is
negligible.

Value

If type(x)='responsivity.material' it returns a colorSpec object with type = 'material'
(quantity = 'reflectance').

If type(x)='responsivity.light' it returns a colorSpec object with type = 'light' (quantity='energy'
or quantity='photons' depending on quantity(x)).

In either case, the returned object has organization = 'df.row' and the extradata is a data.frame
with these columns:



invert 45

response the input matrix of desired responses
estim.precis the difference between the desired response and actual response. It is the mean

of the absolute value of the differences. See rootSolve::multiroot()

time.msec the time to compute the spectrum, in msec. When method='Hawkyard', all N
spectra are computed at once, so all N spectra are assigned the same mean time.

iters the number of iterations that were required to find the relevant root. This is not
present when method='Hawkyard'.

clamped a logical indicating whether the reflectance was clamped to [0,1]. This is present
only when method='Hawkyard'.

If a response could not be estimated, the row contains NA in appropriate columns, and a warning is
issued.

In case of global error, the function returns NULL.

Known Issues

If type(x)='responsivity.light' the centroid method may fail (not converge) if the response is
too far from that of Illuminant E.

References

Davis, Glenn. A Centroid for Sections of a Cube in a Function Space, with Application to Col-
orimetry. https://arxiv.org/abs/1811.00990. [math.FA]. 2018.

Bianco, Simone. Reflectance spectra recovery from tristimulus values by adaptive estimation with
metameric shape correction. vol. 27, no 8. Journal of the Optical Society of America A. pages
1868-1877. 2010 https://opg.optica.org/josaa/abstract.cfm?uri=josaa-27-8-1868.

Burns, Scott A. Generating Reflectance Curves from sRGB Triplets. http://scottburns.us/
reflectance-curves-from-srgb/.

Hawkyard, C. J. Synthetic reflectance curves by additive mixing. Journal of the Society of Dyers
and Colourists. vol. 109. no. 10. Blackwell Publishing Ltd. pp. 323-329. 1993.

Koenderink, J.J. Color for the Sciences. MIT Press. 2010.

See Also

type(), quantity(), organization(), specnames(), product(), extradata(), rootSolve::multiroot(),
vignette Estimating a Spectrum from its Response

Examples

wave = 400:700
E.eye = product( illuminantE(1,wave), "material", xyz1931.1nm, wavelength=wave )
path = system.file( 'extdata/targets/CC_Avg30_spectrum_CGATS.txt', package='colorSpec' )
MacbethCC = readSpectra( path, wavelength=wave )
XYZ = product( MacbethCC, E.eye, wavelength=wave )
est.eq = invert( E.eye, XYZ, method='centroid', alpha=1 )
extra = extradata(est.eq)
range(extra$estim.precis) # prints 0.000000e+00 3.191741e-08

https://arxiv.org/abs/1811.00990
https://opg.optica.org/josaa/abstract.cfm?uri=josaa-27-8-1868
http://scottburns.us/reflectance-curves-from-srgb/
http://scottburns.us/reflectance-curves-from-srgb/


46 lightResponsivitySpectra

lightResponsivitySpectra

compute standard light responsivity spectra

Description

Some action spectra standards are defined by simple equations; the erythemal spectrum for human
sunburn is one of them.

Usage

erythemalSpectrum( wavelength=250:400 )

Arguments

wavelength a vector of wavelengths, in nm

Details

This erythemal spectrum is defined in 4 pieces: λ ≤ 298, 298 ≤ λ ≤ 328, 328 ≤ λ ≤ 400, and
400 < λ. The unit is nm. The spectrum is used in the definition of the international standard UV
Index.

Value

For erythemalSpectrum()
A colorSpec object with quantity equal to 'energy->action'. The responsivity is 0 for λ > 400
nm, so this putting this spectrum in the category of human vision is a bit of a stretch.

Source

https://en.wikipedia.org/wiki/Ultraviolet_index

References

McKinlay, A.F., and B.L. Diffey. A reference action spectrum for ultraviolet induced erythema in
human skin. CIE Res. Note, 6(1), 17-22. (1987)

See Also

daylight, quantity, materialSpectra, lightSpectra

https://en.wikipedia.org/wiki/Ultraviolet_index


LightSpectra 47

LightSpectra compute standard light spectra

Description

Two families of standard illuminants that are parameterized by temperature are the Planckian spec-
tra (black-body spectra), and daylight spectra. For the daylight spectra, a smoothed version is
available. Illuminant E, a third and trivial spectrum, is also available.

Usage

planckSpectra( temperature, wavelength=300:830, normalize=TRUE, c2=1.4388e-2 )

daylightSpectra( temperature, wavelength=NULL,
components=colorSpec::daylight1964, roundMs=FALSE )

illuminantE( energy=1, wavelength=380:780 )

Arguments

temperature a vector of temperatures, in Kelvin

wavelength a vector of wavelengths. For planckSpectra() and illuminantE() this is re-
quired. For daylightSpectra() this is optional. The default wavelength=NULL
means to use the wavelengths in components, and otherwise components is re-
sampled at the given wavelength vector.

normalize a logical value. If TRUE the Planck spectra are normalized to have value 1 at
560nm. If FALSE then the quantity returned is radiant exitance with unit W ∗
m−2 ∗ nm−1.

c2 the value of hc/k in Planck’s law. h is the Planck constant; c is the speed of
light in m/sec; and k is the Boltzmann constant. The default value of 1.4388e-2
m ∗ K was recommended by the CIE in 2005; in 1986 the CIE recommended
c2=1.438e-2. If c2='calc' then c2 is calculated directly from the 3 physical
constants, as recommended by CODATA 2014.

components a colorSpec object with the daylight components S0, S1, and S2. The default is
daylight1964 and a smoothed version daylight2013 is also available.

roundMs a logical value. The original CIE method for the daylight spectra requires round-
ing intermediate coefficients M1 and M2 to 3 decimal places. This rounding is
necessary to reproduce the tabulated values in Table T.1 of the CIE publication
in References.

energy a vector of energy levels

Details

For planckSpectra() the valid range of temperatures is 0 to Inf (∞) K, but with exceptions at the
endpoints. For a negative temperature the spectrum is set to all NAs.



48 linearize

If temperature=0 and normalize=TRUE, the spectrum is set to all NAs. If temperature=0 and
normalize=FALSE, the spectrum is set to all 0s.
Conversely, if temperature=Inf and normalize=FALSE, the spectrum is set to all NAs. If temperature=Inf
and normalize=TRUE, the spectrum is set to the pointwise limit (560/λ)4 (which appears blue).

For daylightSpectra() the valid range of temperatures is 4000 to 25000 K. For a temperature
outside this range the spectrum is set to all NAs.

The equations for daylightSpectra() and planckSpectra() are complex and can be found in
the References.

IlluminantE() is trivial - all constant energy.

Value

For planckSpectra() and daylightSpectra() :
A colorSpec object with quantity equal to 'energy', and organization equal to 'matrix' or
'vector'. The specnames are PNNNN or DNNNN for planckSpectra() and daylightSpectra()
respectively.
The number of spectra in the object is the number of temperatures = length(temperature).

For illuminantE() :
A colorSpec object with quantity equal to 'energy'.
The number of spectra in the object is the number of energy levels = length(energy).

References

Günther Wyszecki and W.S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982. page 146.

CIE 15: Technical Report: Colorimetry, 3rd edition. CIE 15:2004. Table T.1, pp 30-32, and Note 5
on page 69.

Schanda, Janos. CIE Colorimetry, in Colorimetry: Understanding the CIE System. Wiley Inter-
science. 2007. p. 42.

See Also

daylight, resample, organization, quantity, materialSpectra

linearize linearize a colorSpec object - to make it ready for colorimetric calcu-
lations

Description

linearize spectra and return modified object

Usage

## S3 method for class 'colorSpec'
linearize( x )



lms1971 49

Arguments

x a colorSpec object

Details

If the quantity(x) is not 'absorbance' then x is returned unchanged.

If the quantity(x) is 'absorbance' then absorbance is converted to transmittance using

transmittance = 10−absorbance

Surprisingly, there does not seem to be a similar logarithmic version of reflectance. Plots with
log(responsivity) is somewhat common, but does not seem to have a separate name. I have not seen
log(radiometric power).

Value

linearize returns a colorSpec object with linear quantities.

See Also

quantity

lms1971 Cone Fundamentals - 2-degree (1971)

Description

lms1971.5nm the Vos & Walraven (1971) 2° cone fundamentals from 380 to 780 nm, at 5nm intervals

Format

A colorSpec object organized as a matrix with 3 columns:

long the long wavelength responsivity
medium the medium wavelength responsivity
short the short wavelength responsivity

Source

http://www.cvrl.org/database/text/cones/vw.htm

http://www.cvrl.org/database/text/cones/vw.htm


50 lms2000

References

Vos, J. J. & Walraven, P. L. On the derivation of the foveal receptor primaries. Vision Research.
11 (1971) pp. 799-818.

See Also

lms2000

Examples

summary(lms1971.5nm)
white.point = product( D65.1nm, lms1971.5nm, wave='auto' )

lms2000 Cone Fundamentals - 2-degree (2000)

Description

lms2000.1nm the Stockman and Sharpe (2000) 2° cone fundamentals from 390 to 830 nm, at 1nm intervals

Format

A colorSpec object organized as a matrix with 3 columns:

long the long wavelength responsivity
medium the medium wavelength responsivity
short the short wavelength responsivity

Source

http://www.cvrl.org/cones.htm

References

Stockman, A., Sharpe, L. T., & Fach, C. C. (1999). The spectral sensitivity of the human short-
wavelength cones. Vision Research. 39, 2901-2927.

Stockman, A., & Sharpe, L. T. (2000). Spectral sensitivities of the middle- and long-wavelength
sensitive cones derived from measurements in observers of known genotype. Vision Research. 40,
1711-1737.

See Also

lms1971

http://www.cvrl.org/cones.htm


logging 51

Examples

summary(lms2000.1nm)
white.point = product( D65.1nm, lms2000.1nm, wave='auto' )

logging Logging in colorSpec package

Description

There is some flexibility in the colorSpec logging level and format. Logging output goes to
stderr(), just like the message stream; but see sink() (and the pitfalls of using it).

Logging Options

colorSpec.loglevel The levels are: "FATAL", "ERROR", "WARN", "INFO", "DEBUG", and "TRACE"
- the usual ones from Log4j. The initial level is "WARN". A "FATAL" event usually means an
internal package error. When setting colorSpec.loglevel an initial letter is sufficient.

colorSpec.logformat The format is given by a string with standard Log4j conversion specifica-
tions:

%t the date/time of the logging event. %t can be followed by standard strftime specs in braces; see example.
%l the level of the logging event
%n namespace where event occurred
%f function where event occurred
%m the message itself

colorSpec.stoponerror If the this option is TRUE (the default), a log event with level "ERROR"
stops execution; otherwise, execution keeps going. For interactive use, TRUE is probably better.
For long batch jobs, FALSE might be appropriate, since then a single error may not force a
complete repeat.
A "FATAL" event always stops execution.

References

Wikipedia. Log4j. https://en.wikipedia.org/wiki/Log4j

See Also

options, cs.options, sink, stderr

Examples

options( colorSpec.logformat="%t{%H:%M:%OS3} %l %n::%f(). %m", colorSpec.stoponerror=TRUE )

# or equivalently
cs.options( logformat="%t{%H:%M:%OS3} %l %n::%f(). %m", stop=TRUE )

https://en.wikipedia.org/wiki/Log4j


52 luminsivity

luminsivity Luminous Efficiency Functions (photopic and scotopic)

Description

luminsivity.1nm Four luminous efficiency functions, from 360 to 830 nm, at 1nm step

Format

A colorSpec object, with quantity 'energy->neural', and with 4 spectra:

photopic1924 The luminous efficiency function adopted by the CIE in 1924, and defining the
standard photopic observer. It is only to be used when light levels are high enough that
the sensitivity of the eye is mediated by cones, and not rods. It is the same as the y-bar
function in xyz1931.1nm. It is used to define the candela in the International System (SI)
and is the only one of these functions to appear in the SI. It was downloaded from http:
//www.cvrl.org/database/data/lum/vl1924e_1.csv where it is defined from 360 to 830
nm.

scotopic1951 The luminous efficiency function adopted by the CIE in 1951, and defining the
standard scotopic observer. It is only to be used when light levels are low enough to exclude
the activation of cones. It has no effective role in colorimetry. It was downloaded from
http://www.cvrl.org/database/data/lum/scvle_1.csv where it is defined from 380 to
780 nm. It has been padded with 0s to 360 to 830 nm.

photopic1978 The luminous efficiency function for photopic vision, with adjustments in the blue
region by Judd (1951) and Vos (1978). It was published by the CIE in 1988. It was downloaded
from http://www.cvrl.org/database/data/lum/vme_1.csv where it is defined from 380
to 780 nm. It has been padded with 0s to 360 to 830 nm.

photopic2008 The CIE (2008) physiologically-relevant luminous efficiency function for photopic
vision, by Stockman, Jagle, Pirzer, & Sharpe. It was downloaded from http://www.cvrl.
org/database/data/lum/linCIE2008v2e_1.csv where it is defined from 390 to 830 nm. It
has been padded with 0s to 360 to 830 nm.

Note

Luminsivity is a self-coined portmanteau word: luminsivity = luminous * responsivity. The
word is unrelated to emissivity. The term luminous responsivity is not common, but appears on page
15 of Grum. The term luminous efficiency function is standard, but too long. The term luminosity
function is common, but luminosity is ambiguous and also appears in astronomy and scattering
theory.
The object luminsivity.1nm is used by the function photometric().

Source

Colour & Vision Research Laboratory. Institute of Opthalmology. University College London. UK.
http://www.cvrl.org/

http://www.cvrl.org/database/data/lum/vl1924e_1.csv
http://www.cvrl.org/database/data/lum/vl1924e_1.csv
http://www.cvrl.org/database/data/lum/scvle_1.csv
http://www.cvrl.org/database/data/lum/vme_1.csv
http://www.cvrl.org/database/data/lum/linCIE2008v2e_1.csv
http://www.cvrl.org/database/data/lum/linCIE2008v2e_1.csv
http://www.cvrl.org/


materialSpectra 53

References

Grum, Franc and Richard J. Becherer. Radiometry. Optical Radiation Measurements, Volume 1.
Academic Press. 1979.

Stockman, A., Jagle, H., Pirzer, M., & Sharpe, L. T. (2008). The dependence of luminous efficiency
on chromatic adaptation. Journal of Vision, 8, 16:1, 1-26.

See Also

xyz1931.1nm, photometric

Examples

summary(luminsivity.1nm)
product( D65.1nm, luminsivity.1nm, wave='auto' )

materialSpectra compute standard material spectra

Description

Compute neutral gray material constant reflectance/transmittance, and rectangular spectra. Also
compute absorbance of the human lens, as a function of age.

Usage

neutralMaterial( gray=1, wavelength=380:780 )
rectangularMaterial( lambda, alpha=1, wavelength=380:780 )

lensAbsorbance( age=32, wavelength=400:700 )

Arguments

gray a numeric N-vector of gray levels, in the interval [0,1]. gray=1 represents the
Perfect Reflecting Diffuser.

lambda a numeric Nx2 matrix with wavelength pairs in the rows, or a vector that can be
converted to such a matrix, by row. The two wavelengths are the two transition
wavelengths of the returned spectrum, see Details.

alpha a numeric N-vector of chromatic amplitudes in the interval [-1,1]. N must be
equal to nrow(lambda). alpha can also be a single number, which is then repli-
cated to length nrow(lambda). The chromatic amplitude is defined by Logvi-
nenko and controls the size of both transitions, see Details.

age a numeric N-vector of ages in years; all ages must be ≥ 20.

wavelength a vector of wavelengths for the returned object



54 materialSpectra

Details

A rectangular spectrum, or rectangular metamer, is easiest to define when α = 1 and λ1 < λ2. In
this case it is a band-pass filter with transmittance=1 for λ ∈ [λ1, λ2] and transmittance=0 otherwise.
To create a long-pass filter, just set λ2 to Inf, or any large wavelength outside the spectrum range;
and similarly for a short-pass filter.
When 0 < α < 1 the spectrum is a weighted mixture of this band-pass filter with a perfect neutral
gray filter with transmittance=0.5 at all λ, using α and 1 − α as the two weights. The minimum
transmittance is (1 − α)/2 and the maximum is (1 + α)/2, and their difference, the chromatic
amplitude, is α. It is still a band-pass filter.
If α = 0 the spectrum is a perfect neutral with transmittance=0.5.
To "flip" the spectrum to its complement (change band-pass to band-stop, etc.), change α to a
negative number, or swap λ1 and λ2. If λ1 == λ2 then the spectrum is undefined and a warning is
issued (unless α = 0).

Value

neutralMaterial() returns a colorSpec object with quantity equal to 'reflectance'. The
reflectance of each spectrum is constant and taken from gray. There are N spectra in the object -
one for each gray level.

rectangularMaterial() returns a colorSpec object with quantity equal to 'transmitance'.
The transmitance of each spectrum is a step function with 0, 1 or 2 transitions (jumps) defined by
the corresponding row in lambda. If rownames(lambda) is not NULL, they are copied to specnames
of the output. Otherwise the specnames are computed from the shape of the spectrum using these
acronyms: LP (long-pass), SP (short-pass), BP (band-pass), BS (band-stop), and N (neutral, in case
alpha==0).

lensAbsorbance() returns a colorSpec object with quantity equal to 'absorbance'. The ab-
sorbance model for the human lens is taken from Pokorny. There are N spectra in the object - one
for each age (N=length(age)).

Logvinenko

It is clear that there are 3 degrees-of-freedom in the spectra returned by rectangularMaterial().
Logvinenko shows that these spectra in fact form a 3D ball, which he calls the rectangle color atlas.
He also shows that if a material responder satisfies the 2-transition condition, then these spectra
uniquely generate all colors in the corresponding object color solid. For more on this, see the
vignette Estimating a Spectrum from its Response.

Ostwald

Every spectrum returned by rectangularMaterial() is an Ostwald ideal spectrum. In Ostwald’s
terminology, the color content = chromatic amplitude = α. And the black content = white content
= (1 − α)/2. Note that the sum of these 3 contents is 1. However, Ostwald allows black content
and white content to be unequal, as long as the sum of the 3 contents is 1, and all are non-negative.
Thus there is one extra degree-of-freedom for Ostwald’s ideal spectra, for a total of 4 degrees-of-
freedom. If an additional argument (or arguments) were added to rectangularMaterial(), then
it could return all Ostwald ideal spectra.



mean 55

References

Foss, Carl E. and Dorothy Nickerson and Walter C. Granville. Analysis of the Ostwald Color
System. J. Opt. Soc. Am.. vol. 34. no. 7. pp. 361-381. July, 1944.

Logvinenko, A. D. An object-color space. Journal of Vision. 9(11):5, 1-23, (2009).
https://jov.arvojournals.org/article.aspx?articleid=2203976. doi:10.1167/9.11.5.

Pokorny, Joel, Vivianne C. Smith, and Margaret Lutze. Aging of the Human Lens. Applied Optics.
Vol. 26, No. 8. 15 April 1987. Table I. Page 1439.

See Also

lightSpectra, quantity(), specnames(), computeADL(), vignette Estimating a Spectrum from
its Response

Examples

# make a perfect reflecting diffuser (PRD)
prd = neutralMaterial( 1 )

# make a perfect transmitting filter (PTF)
ptf = prd
quantity(ptf) = 'transmittance'

# make a band-stop filter (for interval [500,550])
# with 1% transmittance in the band, and 99% outside the band
bs = rectangularMaterial( c(500,550), -0.98, 400:700 )
bs = rectangularMaterial( c(550,500), 0.98, 400:700 ) # equivalent to previous line

# compare transmittance at 3 ages: 20, 32, and 80 years
plot( linearize(lensAbsorbance( c(20,32,80) )), col='black', lty=1:3 )

mean calculate mean of multiple spectra

Description

compute mean of all spectra in a colorSpec object

Usage

## S3 method for class 'colorSpec'
mean( x, ... )

Arguments

x a colorSpec object

... further arguments ignored



56 metadata

Details

This function might be useful when capturing many spectra on a spectrometer and averaging them
to reduce noise.

Value

a colorSpec object with single spectrum = average of all spectra in colorSpec.

metadata metadata of a colorSpec object

Description

Retrieve or set the metadata of a colorSpec object.

Usage

## S3 method for class 'colorSpec'
metadata(x, ...)

## S3 replacement method for class 'colorSpec'
metadata(x, add=FALSE ) <- value

Arguments

x a colorSpec R object
... optional names of metadata to return
value a named list. If add is FALSE, value replaces any existing metadata. If add

is TRUE, value is appended to the existing list of metadata. If a name already
exists, its value is updated using modifyList(). Unnamed items in value are
ignored.

add if add=FALSE, any existing metadata is discarded. If add=TRUE then existing
metadata is preserved, using modifyList().

Details

The metadata list is stored as attr(x,'metadata'). After construction this list is empty.

Value

metadata(x) with no additional arguments returns the complete named list of metadata. If argu-
ments are present, then only those metadata items are returned.

Note

Do not confuse extradata and metadata.
metadata is unstructured data that is attached to the entire colorSpec object. extradata is struc-
tured data, with a row of data for each spectrum in the object.



multiply 57

See Also

extradata, modifyList

Examples

## Not run:
# get list of *all* metadata
metadata(x)

# get just the file 'path'
metadata( x, 'path' )

# set the 'date'
metadata( x ) = list( date="2016-04-01" )

## End(Not run)

multiply multiply a colorSpec object by scalar, vector, or matrix

Description

multiply spectra by coefficients and return modified object

Usage

## S3 method for class 'colorSpec'
multiply( x, s )

## S3 method for class 'colorSpec'
normalize( x, norm='L1' )

Arguments

x a colorSpec object with M spectra

s a scalar, an M-vector, or an MxP matrix. In the case of a matrix, assigning
colnames(s) is recommended; see Details.

norm one of 'L1', 'L2', or 'Linf', specifying one of the standard vector norms
L1, L2, orLinf .
norm can also be a numeric wavelength (e.g. 560 nm), and then the spectrum
is scaled to have value 1 at this wavelength. Of course, this is not a true vector
norm.



58 officialXYZ

Details

For multiply():
If s is an MxP matrix, say S, and one thinks of the spectra as organized in an NxM matrix X, then
the new spectra are defined by the matrix XS, which is NxP. If the P column names of s are set, then
they are copied to the specnames of the output. Otherwise, default spectrum names are assigned as
in colorSpec(), with a warning.
If s is an M-vector, then S=diag(s) is computed and used in the previous sentence. This has the
effect of multiplying spectrum i by s[i].
If s is a scalar then every spectrum is multiplied by s.
The multiplication may produce negative entries, but no check is made for this.
WARNING: An M-vector and an Mx1 matrix may yield quite different results.

For normalize():
normalize() calls multiply() with s = an M-vector. If the norm of a spectrum is 0, then it is left
unchanged.

Value

multiply returns a colorSpec object with the matrix of spectra of x multiplied by s.

normalize returns a colorSpec object with each spectrum of x scaled to have given norm equal to
1.

In both functions, the quantity and wavelength are preserved.

Note

If x is organized as a matrix, and s is a scalar, the one can use the simpler and equivalent s*x.

See Also

product(), quantity(), wavelength(), specnames(), colorSpec()

officialXYZ Query the Official XYZ values for Standard Illuminants

Description

In careful calcuations with standard illuminants, it is often helpful to have the ’official’ values of
XYZ, i.e. with the right number of decimal places.

Usage

officialXYZ( name )

Arguments

name a subvector of c('A','B','C','D50','D50.ICC','D55','D65','D75', 'E','F2','F7','F11'),
which are the names of some standard illuminants



organization 59

Details

All XYZ values are taken from the ASTM publication in References, except B which is taken from
Wyszecki & Stiles and D50.ICC which is taken from ICC publications. The latter is different than
that of ASTM.

Value

An Mx3 matrix where M is the length of name. Each row filled with the official XYZ, but if the
illuminant name is not recognized the row is all NAs. The matrix rownames are set to name, and
colnames to c('X','Y','Z').

WARNING

This function is deprecated. New software should use spacesRGB::standardXYZ() instead.

Note

The input names are case-sensitive. The output XYZ is normalized so that Y=1.

References

ASTM E 308 - 01. Standard Practice for Computing the Colors of Objects by Using the CIE System.
(2001).

Günther Wyszecki and W. S. Stiles. Color Science: Concepts and Methods, Quantitative Data and
Formulae, Second Edition. John Wiley & Sons, 1982. Table I(3.3.8) p. 769.

See Also

ABC, D50, D65, Fluorescents, illuminantE

Examples

officialXYZ( c('A','D50','D50.ICC','D65') )
# X Y Z
# A 1.0985000 1 0.3558500
# D50 0.9642200 1 0.8252100
# D50.ICC 0.9642029 1 0.8249054
# D65 0.9504700 1 1.0888300

organization organization of a colorSpec object

Description

Retrieve or set the organization of a colorSpec object.



60 organization

Usage

## S3 method for class 'colorSpec'
organization(x)

## S3 replacement method for class 'colorSpec'
organization(x) <- value

Arguments

x a colorSpec R object

value a valid organization: 'vector', 'matrix', 'df.col', or 'df.row'.

Details

If organization(x) is "vector", then x is a vector representing a single spectrum. Compare this
with stats::ts().

If organization(x) is "matrix", then x is a matrix and the spectra are stored in the columns.

If organization(x) is "df.col", then x is a data.frame with M+1 columns, where M is the
number of spectra. The wavelengths are stored in column 1, and the spectra in columns 2:(M+1).
This organization is good for printing to the console, and writing to files.

If the organization of x is "df.row", then x is a data.frame with N rows, where N is the number
of spectra. The spectra are stored in the last column, which is a matrix with the name "spectra".
The other columns preceding spectra (if present) contain extra data associated with the spectra;
see extradata.

Value

organization(x) returns a valid organization: 'vector', 'matrix', 'df.col', or 'df.row'.

Note

In organization(x) <- value
if x has more than 1 spectrum, then value equal to 'vector' is invalid and ignored.
If organization(x) is equal to 'df.row' and also has extradata, then changing the organization
silently discards the extradata.

See Also

colorSpec; extradata

Examples

organization(Hoya) # returns 'df.row'
organization(Hoya) = 'matrix' # extradata in Hoya is silently discarded



photometric 61

photometric convert illuminant spectra to photometric units

Description

Convert radiometric units of power or energy to photometric units, using 4 standard photometric
weighting curves. Actinometric units (number of photons) are converted to radiometric units (en-
ergy of photons) on-the-fly.

Usage

## S3 method for class 'colorSpec'
photometric( x, photopic=683, scotopic=1700, multiplier=1 )

Arguments

x a colorSpec object with type equal to 'light', and with M spectra

photopic the conversion factor for photopic vision, in lumen/watt. The CIE standard is
683, and another common value is 683.002.

scotopic the conversion factor for scotopic vision, in lumen/watt. The CIE standard is
1700, and another common value is 1700.06.

multiplier an conversion factor intended for conversion of units, and applied to both pho-
topic and scotopic vision. For example if the input unit of x is watt ∗ sr−1, and
the desired output unit is candlepower, then set multiplier=1/0.981.

Details

The function computes the product of x with luminsivity.1nm. This product is an Mx4 matrix,
where M is the number of spectra in x. There are 3 columns for photopic vision, and 1 column
for scotopic vision. These columns are multiplied by the appropriate conversion factors and the
resulting Mx4 matrix is returned.

The 5 power-based input quantities and corresponding photometric outputs are:

radiant power [watt] —> luminous flux [lumen]
irradiance [watt ∗m−2] —> illuminance [lumen ∗m−2 = lux]
radiant exitance [watt ∗m−2] —> luminous exitance [lumen ∗m−2 = lux]
radiant intensity [watt ∗ sr−1] —> luminous intensity [lumen ∗ sr−1 = candela]
radiance [watt ∗ sr−1 ∗m−2] —> luminance [candela ∗m−2 = nit]

The 2 common energy-based input quantities and corresponding photometric outputs are:

radiant energy [joule] —> luminous energy [talbot = lumen− second]
radiant exposure [joule ∗m−2] —> luminous exposure [talbot ∗m−2 = lux− second]



62 plot

and there are 3 more obtained by integrating over time. For example "time-integrated radiance" —>
"time integrated luminance". But I have not been able to find names for these 3. The talbot is the
unofficial name for a lumen-second.

Value

photometric() returns an Mx4 matrix, where M is the number of spectra in x. The rownames are
specnames(x), and the colnames are specnames(luminsivity.1nm).
In case of ERROR it returns NULL.

Note

To get the right output quantity and units, the user must know the input quantity and units. If the
units are different than those in the above list, then set multiplier appropriately.
It is up to the user to determine whether photopic or scotopic vision (or neither) is appropriate. The
intermediate mesopic vision is currently a subject of research by the CIE, and might be added to
this function in the future.

References

Poynton, Charles. Digital Video and HD - Algorithms and Interfaces. Morgan Kaufmann. Sec-
ond Edition. 2012. Appendix B, pp. 573-580.

See Also

quantity, type, luminsivity.1nm, radiometric

Examples

photometric( solar.irradiance ) # unit is watt*m^{-2}

# photopic1924 scotopic1951 photopic1978 photopic2008 # units are lux
# AirMass.0 133100.41 313883.2 133843.65 140740.3
# GlobalTilt 109494.88 250051.5 110030.31 115650.0
# AirMass.1.5 97142.25 215837.1 97571.57 102513.7

plot plot spectra

Description

plot the spectra in a colorSpec object as lines or points

Usage

## S3 method for class 'colorSpec'
plot( x, color=NULL, subset=NULL, main=TRUE, legend=TRUE, CCT=FALSE, add=FALSE, ... )



plot 63

Arguments

x a colorSpec object

color If color=NULL then colors are computed from the spectra themselves. If type(x)
is 'material' the color is computed using illuminant D65.1nm and respon-
der BT.709.RGB with no further normalization. Otherwise the spectrum color
is faked by changing its quantity to 'energy' and taking the product with
BT.709.RGB. The resulting RGBs are normalized to have a maximum of 1. This
RGB normalization is done before processing the subset argument.
If color='auto' then a suitable set of colors is generated using colorRamp().
Otherwise color is passed on to lines.default() as the col argument, e.g.
col='black'.

subset specifies a subset of x to plot; see subset() for acceptable arguments.

main If main=TRUE then a main title is generated from the file 'path' in the metadata
list, or from deparse(substitute(x)). If main=FALSE then no main title is
displayed. And if main is a string then that string is used as the main title.

legend If legend=TRUE then a pretty legend using specnames(x) is placed in the 'topright'
corner of the plot. If legend is a string it is interpreted as naming a corner of
the plot and passed as such to the function legend. If legend=FALSE then no
legend is drawn.

CCT If CCT=TRUE and the type of x is 'light' then the CCT of each spectrum is
added to the legend; see computeCCT().

add If add=TRUE then the lines are added to an existing plot, and these arguments are
ignored: main, ylab, xlim, ylim, and log; see Details.

... other graphical parameters, see Details

Details

Commonly used graphical parameters are:

type passed to lines.default(), with default type='l'. Other valid values are 'p' (points),
'b', 'c', 'o', 'h', 'S', 's', and 'n', see plot() for their meanings.
An additional type='step' is available. This option draws each spectrum as a step function,
similar to 'S' and 's', except that the jumps are between the wavelengths (with appropriate
extensions at min and max wavelengths). The function segments() is used for the drawing.
For type='step', lwd and lty should be vectors of length 1 or 2. If the length of lwd is 1,
then horizontal segments are draw with that width, but vertical segments are not drawn. If the
length of lwd is 2, then vertical segments are draw with width lwd[2]. If the length of lty is
2, then the styles are applied to the horizontal and vertical segments in that order. If the length
of lty is 1, then that style is applied to both horizontal and vertical segments. For examples
of this plotting option, see the vignette Convexity and Transitions.

lwd, lty passed to lines.default(), except when type='step' when they are passed to segments().
In the former case these can be vectors, and components are passed sequentially to each spec-
trum, similar to matplot(). In the latter case, see the description in type. The default value
for both is 1.

pch passed to lines.default(), but it only has meaning when type='p', 'b', or 'o'. This can
be a vector, and components are passed sequentially to each spectrum.



64 plotOptimals

ylab If ylab is a string then it is passed on to plot.default(), otherwise suitable default string
is generated.

xlim, ylim If xlim and ylim are 2-vectors, they are passed to plot.default. If one of the com-
ponents is NA then a suitable default is supplied.

log passed on to plot.default(). Care must be taken for y because many spectra are 0 at some
wavelengths, and even negative. Use ylim in such cases.

Value

TRUE or FALSE

See Also

computeCCT(), subset(), lines(), segments(), plot(), matplot(), colorRamp()

Examples

plot( 100 * BT.709.RGB )
plot( xyz1931.1nm, add=TRUE, lty=2, legend=FALSE )

plotOptimals Plot Optimal Colors

Description

Consider a colorSpec object x with type equal to 'responsivity.material' and 3 responsivity
spectra. The function plotOptimals3D() makes a plot of the object-color solid for x. This solid is
a zonohedron in 3D. The 3D drawing package rgl is required.
Consider a colorSpec object x with type equal to 'responsivity.material' and 2 responsivity
spectra. The function plotOptimals2D() makes a plot of the object-color solid for x. This solid is
a zonogon in 2D. The 3D drawing package rgl is not required.
The set of all possible material reflectance functions (or transmittance functions) is convex, closed,
and bounded (in any reasonable function space), and this implies that the set of all possible output
responses from x is also convex, closed, and bounded. The latter set is called the object-color solid,
or Rösch Farbkörper, for x. A color on the boundary of the object-color solid is called an optimal
color. For more discussion see sectionOptimalColors().

Usage

## S3 method for class 'colorSpec'
plotOptimals3D( x, size=50, type='w', both=TRUE )

## S3 method for class 'colorSpec'
plotOptimals2D( x )



plotOptimals 65

Arguments

x a colorSpec object with type equal to 'responsivity.material' and 2 or 3
spectra, as appropriate.

size an integer giving the number of wavelengths at which to resample x. To skip
resampling, set size=NA.

type type='w' for a wireframe plot of the parallelogram faces. type='p' for a point
plot with points at the centers of the parallelograms.

both the color solid is symmetric about its center, so only half of it must be computed.
If both=TRUE it plots one half in black and the other half in red. If both=FALSE
it only plots one half in black.

Value

The functions return TRUE or FALSE.

Details for 3D

If n is the number of wavelengths, the number of parallelogram faces of the zonohedron is n*(n-1).
The time to compute these faces increase with n even faster, so that is why the default size=50 is a
fairly small number. It was chosen to be a reasonable compromise between detail and performance.
In addition to the wireframe or points, it draws the box with opposite vertices at the "poles" 0 and
W and the diagonal segment of neutral grays that connects 0 and W.

Details for 2D

If n is the number of wavelengths, the number of edges in the zonogon is 2*n. Computing these
edges is fast and visualization is easy, so there are no plotting options at this time.

Note

If all responsivity functions of x are non-negative, the object-color solid of x is inside the box. If
the responsivity functions of x have negative lobes, the object-color solid of x extends outside the
box. Indeed, the box may actually be inside the optimals.

References

Centore, Paul. A Zonohedral Approach to Optimal Colours. Color Research & Application. Vol.
38. No. 2. pp. 110-119. April 2013.

Logvinenko, A. D. An object-color space. Journal of Vision. 9(11):5, 1-23, (2009).
https://jov.arvojournals.org/article.aspx?articleid=2203976. doi:10.1167/9.11.5.

West, G. and M. H. Brill. Conditions under which Schrödinger object colors are optimal. Journal
of the Optical Society of America. 73. pp. 1223-1225. 1983.

See Also

type(), probeOptimalColors(), sectionOptimalColors(), vignette Plotting Chromaticity Loci
of Optimal Colors



66 print

Examples

human = product( D50.5nm, 'slot', xyz1931.5nm, wave=seq(400,770,by=5) )
plotOptimals3D( human )

plotOptimals2D( subset(human,2:3) ) # y and z only

scanner = product( D50.5nm, 'slot', BT.709.RGB, wave=seq(400,770,by=5) )
plotOptimals3D( scanner )

print Convert colorSpec object to readable text

Description

display a colorSpec object as readable text. Output goes to stdout().

Usage

## S3 method for class 'colorSpec'
print( x, ...)

## S3 method for class 'colorSpec'
summary( object, long=TRUE, ... )

Arguments

x a colorSpec object

object a colorSpec object

long logical indicating whether to print metadata, calibrate, sequence, and emulate
data

... further arguments ignored

Details

If long=FALSE, summary() prints a summary of the wavelength vector, and names of all spectra.
For each spectrum it prints the range of values, LambdaMax, and extradata if any. If long=TRUE it
also prints data listed above (if any).
The function print() simply calls summary() with long=FALSE.

Value

Both functions return (invisibly) the character vector that was just printed to stdout().

See Also

extradata, print, summary, stdout



probeOptimalColors 67

Examples

print( xyz1931.1nm )

xyz1931.1nm # same thing, just calls print()

probeOptimalColors compute optimal colors by ray tracing

Description

Consider a colorSpec object x with type equal to 'responsivity.material'. The set of all
possible material reflectance functions (or transmittance functions) is convex, closed, and bounded
(in any reasonable function space), and this implies that the set of all possible output responses
from x is also convex, closed, and bounded. The latter set is called the object-color solid or Rösch
Farbkörper for x. A color on the boundary of the object-color solid is called an optimal color. The
special points W (the response to the perfect reflecting diffuser) and 0 are on the boundary of this
set. The interior of the line segment of neutrals joining 0 to W is in the interior of the object-color
solid. It is natural to parameterize this segment from 0 to 1 (from 0 to W).

A ray r that is based at a point on the interior of the neutral line segment must intersect the boundary
of the object-color solid in a unique optimal color. The purpose of the function probeOptimalColors()
is to compute that intersection point.

Currently the function only works if the number of spectra in x is 3 (e.g. RGB or XYZ).

Before colorSpec v 0.8-1 this function used a 2D root-finding method that could only find optimal
colors whose spectra contain 0, 1, or 2 transitions. But starting with v0.8-1, we have switched to
zonohedral representation of the object-color solid, which makes it possible to discover more than
2 transitions. The inspiration for this change is the article by Centore. To inspect these computed
spectra, the argument spectral must be set to TRUE.

Usage

## S3 method for class 'colorSpec'
probeOptimalColors( x, gray, direction, aux=FALSE, spectral=FALSE, tol=1.e-6 )

Arguments

x a colorSpec object with type equal to 'responsivity.material' and 3 spec-
tra

gray vector of numbers in the open interval (0,1) that define neutral grays on the line
segment from black to white; this neutral gray point is the basepoint of a probe
ray

direction a numeric Nx3 matrix with directions of the probe rays in the rows, or a numeric
vector that can be converted to such a matrix, by row.

aux a logical that specifies whether to return extra performance and diagnostic data;
see Details



68 probeOptimalColors

spectral if TRUE, the function returns a colorSpec object with the optimal spectra, see
Value.

tol error tolerance for the intersection of probe and object-color boundary

Details

Each gray level and each direction defines a ray. So the total number of rays traced is length(gray)
* nrow(direction). The 3 responsivities are regarded not as continuous functions, but as step
functions. This implies that the color solid is a zonohedron. In the preprocessing phase the zono-
hedral representation is calculated. The faces of the zonohedron are either parallelograms, or com-
pound faces that can be partitioned into parallelograms. The centers of all these parallelograms are
computed, along with their normals and plane constants.
This representation of the color solid is very strict regarding the 2-transition assumption. During
use, one can count on there being some spectra with more than two transitions. Forcing the best
2-transition spectrum is a possible topic for the future.

Value

If argument spectral=FALSE, probeOptimalColors() returns a data.frame with a row for each
traced ray. There are length(gray) * nrow(direction) rays. The columns in the output are:

gray the graylevel defining the basepoint of the ray. basepoint = gray ∗W
direction the direction of the ray
s computed scalar so that basepoint+ s ∗ direction is optimal
optimal the optimal color on the boundary; optimal = basepoint+ s ∗ direction
lambda lambda.1 and lambda.2 at the 2 transitions, in nm. lambda.1 < lambda.2 =>

bandpass, and lambda.1 > lambda.2 => bandstop. It will happen that the optimal
spectrum has more than 2 transitions; in this case both lambdas are set to NA.

dol delta and omega - the Logvinenko parameters (δ, ω) for optimal colors, plus
lambda (λ) in nm. ω is the reparameterization of λ ; see Logvinenko. If there
are more than 2 transistions, these are set to NA.

If aux is TRUE, these auxiliary columns related to performance and diagnostics are added:

timetrace time to trace the ray, in seconds
parallelograms # of parallelograms in the (possibly compound) face. 1 means just a single

parallelogram.
tested # of parallelograms actually tested for ray intersection. This only has meaning

for compound faces.
alpha the 2 coordinates of the intersection point inside the parallelogram

If argument spectral=TRUE, probeOptimalColors() returns a colorSpec object with quantity
'reflectance'. This object contains the optimal spectra, and can be used to inspect the spectra
with more than 2 transitions, which will happen. The above-mentioned data.frame can then be
obtained by applying extradata() to the returned object.

If an individual ray could not be traced (which should be rare), the row contains NA in appropriate
columns.
In case of global error, the function returns NULL.



probeOptimalColors 69

WARNING

The preprocessing calculation of the zonohedron dominates the total time. And this time goes up
rapidly with the number of wavelengths. We recommend using a wavelength step of 5nm, as in
the Examples. For best results, batch a lot of rays into a single function call and then process the
output.
Moreover, the preprocessing time is dominated by the partitioning of the compound faces into
parallelograms. This is made worse by spectral responses with little overlap, as in scanner.ACES.
In these cases, try a larger step size, and then reduce. Optimizing these compound faces is a possible
topic for the future.

References

Centore, Paul. A zonohedral approach to optimal colours. Color Research & Application. Vol.
38. No. 2. pp. 110-119. April 2013.

Logvinenko, A. D. An object-color space. Journal of Vision. 9(11):5, 1-23, (2009).
https://jov.arvojournals.org/article.aspx?articleid=2203976. doi:10.1167/9.11.5.

Schrödinger, E. (1920). Theorie der Pigmente von grösster Leuchtkraft. Annalen der Physik. 62,
603-622.

West, G. and M. H. Brill. Conditions under which Schrödinger object colors are optimal. Journal
of the Optical Society of America. 73. pp. 1223-1225. 1983.

See Also

type, vignette Plotting Chromaticity Loci of Optimal Colors, scanner.ACES, extradata()

Examples

wave = seq(400,700,by=5)
D50.eye = product( D50.5nm, 'material', xyz1931.1nm, wavelength=wave )
probeOptimalColors( D50.eye, c(0.2,0.5,0.9), c(1,2,1, -1,-2,-1) )

## gray direction.1 direction.2 direction.3 s optimal.1 optimal.2
## 1 0.2 1 2 1 32.306207 52.533143 85.612065
## 2 0.2 -1 -2 -1 8.608798 11.618138 3.782055
## 3 0.5 1 2 1 20.993144 71.560483 94.485416
## 4 0.5 -1 -2 -1 20.993144 29.574196 10.512842
## 5 0.9 1 2 1 4.333700 95.354911 103.165832
## 6 0.9 -1 -2 -1 35.621938 55.399273 23.254556

## optimal.3 lambda.1 lambda.2 dol.delta dol.omega dol.lambda
## 1 49.616046 451.8013 598.9589 0.63409966 0.48287469 536.97618091
## 2 8.701041 636.3031 429.4659 0.08458527 0.99624955 674.30015903
## 3 64.267740 441.9105 615.0822 0.78101041 0.49048222 538.73234859
## 4 22.281453 615.0822 441.9105 0.21898959 0.99048222 662.20606601
## 5 82.227974 422.9191 648.7404 0.95800430 0.49825407 540.49590064
## 6 42.272337 593.2415 455.2425 0.42035428 0.97962398 650.57382749

# create a 0-1 spectrum with 2 transitions
rectspec = rectangularMaterial( lambda=c(579.8697,613.7544), alpha=1, wave=wave )



70 product

# compute the corresponding color XYZ
XYZ = product( rectspec, D50.eye )
XYZ
## X Y Z
## BP_[579.87,613.754] 33.42026 21.96895 0.02979764

# trace a ray from middle gray through XYZ
white.XYZ = product( neutralMaterial(1,wave=wave), D50.eye )
direction = XYZ - white.XYZ/2

res = probeOptimalColors( D50.eye, 0.5, direction, aux=FALSE )
res$s
## 1.00004 the ray has gone past the original color to the boundary

res$optimal
## X Y Z
## [1,] 33.41958 21.96774 0.02808178

res$lambda
## NA NA because there are more than 2 transitions in the true optimal

# since s=1.00004 > 1,
# XYZ is actually in the interior of the color solid, and not on the boundary.
# The boundary is a little-bit further along the ray,
# and the corresponding spectrum has more than 2 transitions.

product Compute the product of colorSpec objects

Description

Take a sequence of colorSpec objects and compute their product. Only certain types of sequences
are allowed. The return value can be a new colorSpec object or a matrix; see Details.

Usage

## S3 method for class 'colorSpec'
product( ... )

Arguments

... unnamed arguments are colorSpec objects, and possibly a single character string,
see Details. Possible named arguments are:

wavelength The default wavelength='identical' means that all the color-
Spec objects must have the same wavelength sequence; if they do not it is
an ERROR. wavelength can be a new wavelength sequence, and all the
objects are then resampled at these new wavelengths. wavelength can



product 71

also be 'auto' or NULL which means to compute a suitable wavelength se-
quence from those of the objects, see Details. It is OK to abbreviate the
string wavelength (e.g. to wave); see Examples. It is OK for the wave-
length sequence to be irregular; when the return value is a matrix the inte-
gration weights the spectrum values appropriately.

method, span, extrapolation, clamp passed to resample() with no check-
ing or changes

integration only applies when the return type is matrix. The default option
is 'rectangular', which means to weight the spectrum value equally at all
wavelengths; this is the ASTM E308-01 recommendation. The other option
is 'trapezoidal', which means to give the 2 endpoint wavelength values
1/2 the weight of the others. Trapezoidal integration is provided mostly for
compatibility with other software.

Details

To explain the allowable product sequences it is helpful to introduce some simple notation for the
objects:

notation colorSpec type description of the object
L light a light source
M material a material
RL responsivity.light a light responder (aka detector)
RM responsivity.material a material responder (e.g. a scanner)

It is also helpful to define a sequence of positive integers to be conformable iff it has at most one
value greater than 1. For example, a sequence of all 1s is conformable. A sequence of all q’s is con-
formable. The sequences c(1,3) and c(1,1,4,1,1,4,1) are conformable, but c(1,1,4,1,3,4,1)
is not.

There are 6 types of sequences for which the product is defined:

1. M1 ∗M2 ∗ ... ∗Mm 7→M ′

The product of m materials is another material. Think of a stack of m transmitting filters effectively
forming a new filter. If we think of each object as a matrix (with the spectra in the columns), then
the product is element-by-element using R’s * - the Hadamard product. The numbers of spectra in
the terms must be conformable. If some objects have 1 spectrum and all the others have q, then the
column-vector spectrums are repeated q times to form a matrix with q columns. If the numbers of
spectra are not conformable, it is an ERROR and the function returns NULL.
As an example, suppose M1 has 1 spectrum and M2 has q spectra, and m = 2. Then the product
is a material with q spectra. Think of an IR-blocking filter followed by the RGB filters in a 3-CCD
camera.



72 product

2. L ∗M1 ∗M2 ∗ ... ∗Mm 7→ L′

The product of a light source followed by m materials is a light source. Think of a light source fol-
lowed by a stack of m transmitting filters, effectively forming a new light source. The numbers of
spectra in the terms must be conformable as in sequence 1, and the matrices are multiplied element
by element.
As an example, suppose L has 1 spectrum and M1 has q spectra, and m = 1. Then the product is a
light source with q spectra. Think of a light source followed by a filter wheel with q filters.

3. M1 ∗M2 ∗ ... ∗Mm ∗RL 7→ R′
L

The product of m materials followed by a light responder, is a light responder. Think of a stack
of m transmitting filters in front of a camera, effectively forming a new camera. The numbers of
spectra in the terms must be conformable as in sequence 1, and the matrices are multiplied element
by element.
As an example, suppose RL has 1 spectrum and M1 has q spectra, and m = 1. Then the product is
a light responder with q spectra. Think of a 3-CCD camera in which all 3 CCDs have exactly the
same responsivity and so can be modeled with a single object RL.

4. L ∗M1 ∗ ...∗ • ∗... ∗Mm ∗RL 7→ R′
M

This is the strangest product. The bullet symbol • means that a variable material is inserted at that
slot in the sequence (or light path). For each material spectrum inserted there is a response from
RL. Therefore the product of this sequence is a material responder RM . Think of a light source L
going through a transparent object • on a flatbed scanner and into a camera RL. For more about
the mathematics of this product, see the colorSpec-guide.pdf in the doc directory. These material
responder spectra are the same as the effective spectral responsivities in Digital Color Management.
The numbers of spectra in the terms must be conformable as in sequence 1, and the product is a
material responder with q spectra.
In the function product() the location of the • is marked by any character string whatsoever - it’s
up to the user who might choose something that describes the typical material (between the light
source and camera). For example one might choose:
scanner = product( A.1nm, 'photo', Flea2.RGB, wave='auto')
to model a scanner that is most commonly used to scan photographs. Other possible strings could
be 'artwork', 'crystal', 'varmaterial', or even 'slot'. See the vignette Viewing Object
Colors in a Gallery for a worked-out example.

5. L ∗M1 ∗M2 ∗ ... ∗Mm ∗RL 7→ matrix
The product of a light source, followed by m materials, followed by a light responder, is a matrix!
The numbers of spectra in the terms must splittable into a conformable left part (L′ from sequence
2.) and a conformable right part (R′

L from sequence 3.). There is a row for each spectrum in L′,
and a column for each spectrum in R′

L. Suppose the element-by-element product of the left part is
n×p and the element-by-element product of the right part is and n×q, where n is the number of
wavelengths. Then the output matrix is the usual matrix product %*% of the transpose of the left part
times and right part, which is p×q.
As an example, think of a light source followed by a reflective color target with 24 patches followed
by an RGB camera. The sequence of spectra counts is c(1,24,3) which is splittable into c(1,24)
and c(3). The product matrix is 24×3. See the vignette Viewing Object Colors in a Gallery for



product 73

a worked-out example.
Note that is OK for there to be no materials in this product; it is OK if m = 0. See the vignette Blue
Flame and Green Comet for a worked-out example.

6. M1 ∗M2 ∗ ... ∗Mm ∗RM 7→matrix
The product of m materials followed by a material responder, is a matrix ! The sequence of num-
bers of spectra must be splittable into left and right parts as in sequence 4, and the product matrix is
formed the same way. One reason for computing this matrix in 2 steps is that one can calibrate
the material responder separately in a customizable way. See the vignette Viewing Object Colors
in a Gallery for a worked-out example with a flatbed scanner.

Note that sequences 5. and 6. are the only ones that use the usual matrix product %*%. They may
also use the Hadamard matrix product *, as in sequences 1 to 4.

The argument wavelength can also be 'auto' or NULL. In this case the intersection of all the
wavelength ranges of the objects is computed. If the intersection is empty, it is an ERROR and the
function returns NULL. The wavelength step step.wl is taken to be the smallest over all the object
wavelength sequences. If the minimum step.wl is less than 1 nanometer, it is rounded off to the
nearest power of 2 (e.g 1, 0.5, 0.25, ...).

Value

product() returns either a colorSpec object or a matrix, see Details.

If product() returns a colorSpec object, the organization of the object is 'matrix' or 'vector';
any extradata is lost. However, all terms in the product are saved in attr(*,'sequence'). One
can use str() to inspect this attribute.

If product() returns a matrix, this matrix can sometimes be ambiguous, see Note.

All actinometric terms are converted to radiometric on-the-fly and the returned colorSpec object is
also radiometric.

In case of ERROR it returns NULL.

Note

The product for sequences 1, 2, and 3 is associative. After all matrices are filled out to have q
columns, the result is essentially a Hadamard product of matrices, which is associative. Also note
that a subsequence of sequences 2 and 3 might be sequence 1.

The product for sequence 4 is never associative, since subproducts that contain the variable • are
undefined. However the result is essentially a Hadamard product of matrices, and is unambiguous.

The product for sequence 5 is associative in special cases, but not in general. The problem is that
the left and right splitting point is not unique. If all objects have only a single spectrum, then it *is*
associative, and therefore unambiguous. If the left part has a different number of multiple spectra
than the right part, then it is not associative in general since some ways of grouping the product may
be undefined.
Moreover, in some cases the product can be ambiguous. Suppose that the vector of spectrum counts
is c(1,3,1); this could come from a single light source, followed by 3 filters (e.g. RGB), followed



74 product

by a graylevel camera. There are 2 ways to split this: "1|3,1" and "1,3|1". The first split is
interpreted as the light source into a camera with 3 channels. The second split is interpreted as 3
colored light sources into a graylevel camera. In the first split the returned matrix is a 1x3 row
vector. In the second split the returned matrix is a 3x1 column vector. For the vector "1,3,1", one
can show that the computed components in the 2 vectors are equal, so the ambiguity is benign. But
consider the longer sequence "1,3,3,1". There are 3 ways to split this, and the returned matrices
are 1x3, 3x3, and 3x1. So this ambiguity is obviously a problem. Whenever there is an ambiguity,
the function chooses a splitting in which the left part is as long as possible, and issues a warning
message. The user should inspect the result carefully. To avoid the ambiguity, the user should break
the product into smaller pieces and call product() multiple times.

The product for sequence 6 is essentially the same as sequence 5, and the function issues a warning
message when appropriate. Note that a subproduct is defined only if it avoids the final multiplication
with RM .

References

Edward J. Giorgianni and Thomas E. Madden. Digital Color Management: Encoding Solutions.
2nd Edition John Wiley. 2009. Figure 10.11a. page 141.

Wikipedia. Hadamard product (matrices). https://en.wikipedia.org/wiki/Hadamard_product_
(matrices)

ASTM E308-01. Standard Practice for Computing the Colors of Objects by Using the CIE System.
(2001).

See Also

wavelength, type, resample, calibrate, radiometric, step.wl

Examples

# sequence 1.
path = system.file( "extdata/objects/Midwest-SP700-2014.txt", package='colorSpec' )
blocker.IR = readSpectra( path )
product( blocker.IR, Hoya, wave='auto' )

# sequence 2.
product( subset(solar.irradiance,1), atmosphere2003, blocker.IR, Hoya, wave='auto' )

# sequence 3.
plumbicon = readSpectra( system.file( "extdata/cameras/plumbicon30mm.txt", package='colorSpec' ) )
product( blocker.IR, subset(Hoya,1:3), plumbicon, wave='auto' )

# sequence 4.
# make an RGB scanner
bluebalancer = subset(Hoya,'LB')
# combine tungsten light source A.1nm with blue light-balance filter
# use the string 'artwork' to mark the variable material slot
scanner = product( A.1nm, bluebalancer, 'artwork', Flea2.RGB, wave='auto' )

https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)


ptransform 75

# sequence 5.
product( D65.1nm, Flea2.RGB, wave='auto' ) # a 1x3 matrix, no materials
product( D65.1nm, neutralMaterial(0.01), Flea2.RGB, wave='auto' ) # a 1x3 matrix, 1 material
path = system.file( "extdata/sources/Lumencor-SpectraX.txt", package='colorSpec' )
lumencor = readSpectra( path, wave=340:660 )
product( lumencor, Flea2.RGB, wave='auto' ) # a 7x3 matrix, no materials

# sequence 6.
scanner = calibrate( scanner )
target = readSpectra( system.file( "extdata/targets/N130501.txt", package='colorSpec') )
product( target, scanner, wave='auto' ) # a 288x3 matrix

ptransform make a linear transformation to a colorSpec responder

Description

apply a linear transformation to a colorSpec responder with M spectra, so that multiples of M
given primary vectors are transformed to the standard basis of RM . And a given white vector is
transformed to the M-vector of all 1s.
The returned object is always multiply(x,A) where A is an internally calculated MxM matrix. The
name ptransform is short for projective transformation.
In case of ERROR, a message is logged and NULL returned.

Usage

## S3 method for class 'colorSpec'
ptransform( x, primary, white, digits=Inf )

Arguments

x a colorSpec responder with M spectra. type(x) must be 'responsivity.light'
or 'responsivity.material'.

primary an MxM matrix whose rows define the M primary vectors in the response space
of x. It is OK for each row to have a single value that is NA. In this case the NA
value is changed so that the sum of the row is 1. This is done because typically
the rows represent chromaticities in the response space of x. After this change,
the rows of primary must form a basis of RM .
rownames(primary) must be defined; when M=3 they are typically c('R','G','B').

white an M-vector in the response space of x, that is typically the ideal white point of
a color display. When white is expressed in the basis defined by primary, the
coordinates must all be non-zero.
white can also be a colorSpec object with a single spectrum suitable as stimulus



76 ptransform

for x; in this case the vector white is set to product( white, x, wavelength='auto'
).

digits if a positive integer, then white is rounded to this number of decimal digits,
but in a non-standard way, see Details. This is typically done so the internally
calculated MxM matrix A agrees with that from a color standard, see Examples.

Details

The formal mathematical requirements for primary and white are:

• The rows of primary must form a basis of RM . Equivalently, if P denotes the matrix primary,
then P is invertible.

• The coordinates of white in this basis are all non-zero. Equivalently, if x is the solution of
xP = white, then every component of x is non-zero.

Assuming both of these are true, then there is a unique matrix A so that

• A transforms a multiple of the i’th row of P to the i’th standard basis vector of RM .

• A transforms white to the M-vector of all 1s.

This statement is essentially the fundamental theorem of (analytic) projective geometry; see Bum-
crot page 87, and Semple page 398. The rows of P plus white define a projective frame; the former
are the fundamental points and the latter is the unit point.

If digits is a positive integer, the chromaticity of white is computed by dividing white by
sum(white). The latter must be non-zero, or else it is an ERROR. This chromaticity is rounded to
digits decimal digits, while preserving the sum of 1. This rounded chromaticity is non-zero, and
defines a line through 0. The vector white is projected onto this line to get the new and rounded
white, with the rounded chromaticity. See Examples.

Value

a colorSpec object equal to multiply(x,A) where A is an internally calculated MxM matrix.
The quantity and wavelength are preserved. The specnames of the returned object are set to
tolower( rownames(primary) ).
The user may want to change the quantity of the returned object; see Examples.

References

Bumcrot, Robert J. Modern Projective Geometry. Holt, Rinehart, and Winston. 1969.

IEC 61966-2-1:1999. Multimedia systems and equipment - Colour measurement and management.
Part 2-1: Colour management - Default RGB colour space - sRGB. https://webstore.iec.ch/
publication/6169

Semple, J. G. and G. T. Kneebone. Algebraic Projective Geometry. Oxford. 1952.

See Also

quantity, wavelength, colorSpec, multiply, product

https://webstore.iec.ch/publication/6169
https://webstore.iec.ch/publication/6169


ptransform 77

Examples

############ Example for sRGB ###########

# assign the standard sRGB primaries
P = matrix( c(0.64,0.33,NA, 0.3,0.6,NA, 0.15,0.06,NA ), 3, 3, byrow=TRUE )
rownames(P) = c('R','G','B')
P
# [,1] [,2] [,3]
# R 0.64 0.33 NA
# G 0.30 0.60 NA
# B 0.15 0.06 NA

white = product( D65.1nm, xyz1931.1nm, wave='auto' )
white
# X Y Z
# D65 100.437 105.6708 115.0574

white/sum(white)
# X Y Z
# D65 0.3127269 0.3290232 0.3582499

# But the sRGB standard D65 is xy=(0.3127,0.3290)
# so when the next line is executed,
# the calculated 3x3 matrix will *NOT* agree with the sRGB standard
y = ptransform( xyz1931.1nm, P, white, digits=Inf )

product( D65.1nm, y, wave='auto' )
# R G B
# D65 1 1 1 # this is exactly what we want, but the internal 3x3 matrix is a little off

# now repeat, but this time round the white chromaticity to
# xy=(0.3127,0.3290) in order to get the matrix right
y = ptransform( xyz1931.1nm, P, white, digits=4 )

rgb = product( D65.1nm, y, wave='auto' )
rgb
# R G B
# D65 1.000238 1.000053 0.999835 # off in the 4'th digit (WARN: this is linear RGB)

255 * rgb
# R G B
# D65 255.0607 255.0134 254.9579 # good enough for 8-bit RGB

65535 * rgb
# R G B
# D65 65550.59 65538.44 65524.18 # NOT good enough for 16-bit RGB

# So for 16-bit RGB, one can get the white RGB right, or the 3x3 matrix right, but not both !

############ Example for ProPhoto RGB ###########



78 quantity

# assign the standard ProPhoto RGB primaries
P = matrix( c(0.7347,0.2653,NA, 0.1596,0.8404,NA, 0.0366,0.0001,NA ), 3, 3, byrow=TRUE )
rownames(P) = c('R','G','B')
P
# [,1] [,2] [,3]
# R 0.7347 0.2653 NA
# G 0.1596 0.8404 NA
# B 0.0366 0.0001 NA

white = product( D50.5nm, xyz1931.5nm, wave='auto' )
white
# X Y Z
# D50 101.2815 105.042 86.67237

white / sum(white)
# X Y Z
# D50 0.3456755 0.3585101 0.2958144

# but the ProPhoto RGB standard is xy=(0.3457,0.3585); proceed anyway
y = ptransform( xyz1931.5nm, P, white, digits=Inf )

product( D50.5nm, y, wave='auto' )
# R G B
# D50 1 1 1 # this is exactly what we want, but the internal 3x3 matrix is a little off

# the following line is an equivalent way to compute y.
# pass D50.5nm directly as the 'white' argument
y = ptransform( xyz1931.5nm, P, D50.5nm )

quantity quantity of a colorSpec object

Description

Retrieve or set the quantity of a colorSpec object.

Usage

## S3 method for class 'colorSpec'
quantity(x)

## S3 replacement method for class 'colorSpec'
quantity(x) <- value

## S3 method for class 'colorSpec'
type(x)



quantity 79

Arguments

x a colorSpec R object

value a valid quantity string; see Details.

Details

There are 4 valid types, which are further divided into 14 valid quantities. All of these are strings:

For type='light'
quantity = 'energy' (radiometric), or 'photons' (actinometric)

For type='responsivity.light'
quantity = 'energy->electrical', 'energy->neural', 'energy->action',
'photons->electrical', 'photons->neural', or 'photons->action'

For type='material'
quantity = 'reflectance', 'transmittance', or 'absorbance'

For type='responsivity.material'
quantity = 'material->electrical', 'material->neural', or 'material->action'

Also see the colorSpec User Guide.

Value

quantity() returns the quantity of x

type() returns the type of x, which depends only on the quantity.

Note

The colorSpec quantity is more general than the physical SI quantity; for example quantity='energy'
really includes 10 distinct SI quantities and maybe more. The unit is left arbitrary in most cases.
Exceptions are reflectance, transmittance, and absorbance which are dimensionless.

Changing the quantity should only be done if one knows what one is doing. It does not change the
underlying numbers. For example, changing photons to energy does not do numerical conversion.
For this specific conversion, see radiometric().

Similarly, see linearize() for conversion from absorbance to transmittance.

See Also

colorSpec, radiometric, linearize



80 radiometric

radiometric convert a colorSpec object from actinometric to radiometric

Description

Convert a colorSpec object to have quantity that is radiometric (energy of photons) - to prepare it
for colorimetric calculations. Test an object for whether it is radiometric.

Usage

## S3 method for class 'colorSpec'
radiometric( x, multiplier=1, warn=FALSE )

## S3 method for class 'colorSpec'
is.radiometric( x )

Arguments

x a colorSpec object

multiplier a scalar which is multiplied by the output, and intended for unit conversion

warn if TRUE and a conversion actually takes place, the a WARN message is issued.
This makes the user aware of the conversion, so units can be verified. This can
be useful when radiometric() is called from another colorSpec function.

Details

If the quantity of x does not start with 'photons' then the quantity is not actinometric and so x is
returned unchanged. Otherwise x is actinometric (photon-based).

If type(x) is 'light' then the most common actinometric unit of photon count is (µmole of
photons) = (6.02214x1017 photons). The conversion equation is:

E = Q ∗ 10−6 ∗NA ∗ h ∗ c/λ

where E is the energy of the photons, Q is the photon count, NA is Avogadro’s constant, h is
Planck’s constant, c is the speed of light, and λ is the wavelength in meters. The output energy unit
is joule.
If the unit of Q is not (µmole of photons), then the output should be scaled appropriately. For
example, if the unit of photon count is exaphotons, then set multiplier=1/0.602214.

If the quantity(x) is 'photons->electrical', then the most common actinometric unit of re-
sponsivity to light is quantum efficiency (QE). The conversion equation is:

Re = QE ∗ λ ∗ e/(h ∗ c)

where Re is the energy-based responsivity, QE is the quantum efficiency, and e is the charge of an
electron (in C). The output responsivity unit is coulombs/joule (C/J) or amps/watt (A/W).
If the unit of x is not quantum efficiency, then multiplier should be set appropriately.



readCGATS 81

If the quantity(x) is 'photons->neural' or 'photons->action', the most common actinomet-
ric unit of photon count is (µmole of photons) = (6.02214x1017 photons). The conversion equation
is:

Re = Rp ∗ λ ∗ 106/(NA ∗ h ∗ c)

where Re is the energy-based responsivity, Rp is the photon-based responsivity. This essentially
the reciprocal of the first conversion equation.

The argument multiplier is applied to the right side of all the above conversion equations.

Value

radiometric() returns a colorSpec object with quantity that is radiometric (energy-based) and
not actinometric (photon-based). If type(x) is a material type ('material' or 'responsivity.material')
then x is returned unchanged.

If quantity(x) starts with 'energy', then is.radiometric() returns TRUE, and otherwise FALSE.

Note

To log the executed conversion equation, execute cs.options(loglevel='INFO').

Source

Wikipedia. Photon counting. https://en.wikipedia.org/wiki/Photon_counting

See Also

quantity, type, F96T12, cs.options, actinometric

Examples

sum( F96T12 ) # the step size is 1nm, from 300 to 900nm
# [1] 320.1132 photon irradiance, (micromoles of photons)*m^{-2}*sec^{-1}

sum( radiometric(F96T12) )
# [1] 68.91819 irradiance, watts*m^{-2}

readCGATS read tables from files in ANSI/CGATS.17 format

Description

The CGATS text format supports a preamble followed by N tables, where N ≥ 1. Each table can
have a separate header. A table may or may not contain spectral data, see Note. The function
converts each table to a data.frame with attributes; see Details.

Usage

readCGATS( path, collapsesingle=FALSE )

https://en.wikipedia.org/wiki/Photon_counting


82 readCGATS

Arguments

path the path name of a single file, in CGATS format

collapsesingle If path has only one table (N=1) and collapsesingle is TRUE, then return the
single data.frame (instead of a list with 1 data.frame). If path has multiple
tables (N ≥ 2), then collapsesingle is ignored.

Details

The returned list is given attributes: "path", "preamble", and (if present) "date", "created",
"originator", and "file_descriptor". The attribute values are all character vectors. The value
of attribute "path" is the argument path, and the other values are extracted from "preamble". The
length of "preamble" is (typically) greater than 1, and the others have length 1. Each line of the
preamble is a keyword-value pair. The keyword ORIGINATOR is converted to attribute "originator".
The keyword FILE_DESCRIPTOR is converted to attribute "file_descriptor". The keyword CREATED
is converted to attributes "created" and "date". The list is also given names. If the keyword
TABLE_NAME is present in the table header, then its value is used. Otherwise the names are "TABLE_1",
"TABLE_2", ...

Each data.frame in the list is assigned attributes: "header", and (if present) "descriptor". The
length of "header" is (typically) greater than 1, and "descriptor" has length 1. Each line of
the table header is a keyword-value pair. The keywords DESCRIPTOR and TABLE_DESCRIPTOR are
converted to attribute "descriptor".

For the lines between BEGIN_DATA and END_DATA, two conventions for separating the values are
supported:

• In the standard convention, fields are separated by contiguous spaces or tabs, and character
strings (which may have embedded spaces or even tabs) are enclosed by double-quotes. This
is is the convention in the CGATS standard. The function scan() is used here.

• In the non-standard convention, fields are separated by a single tab, and character strings
(which may have embedded spaces but not tabs) are not enclosed by double-quotes. This
convention is often easier to work with in spreadsheet software. The function strsplit() is
used here.

The function readCGATS() selects the separation convention by examining the line after BEGIN_DATA_FORMAT.
If this line is split by a single tab and the number of fields matches that given on the NUMBER_OF_FIELDS
line, then the non-standard convention is selected; otherwise, the standard convention is selected.

Value

readCGATS() returns a list of data.frames - one data.frame for each table found in path. The
list and each individual data.frame have attributes, see Details.

If path has only a single table (the majority of files have only 1) and collapsesingle is TRUE,
then the attributes of the list are copied to those of the data.frame, and the data.frame is then
returned. The name of the table is lost.

If there is an error in any table, then the function returns NULL.



readSpectra 83

Note

In the BEGIN_DATA_FORMAT line(s), field names may not be quoted and may not have embedded
spaces.
The CGATS standard allows duplicated field names, and readCGATS() returns them as they appear,
with no attempt to append numbers in order to make them unique. Examples of field names which
may be duplicated are: SPECTRAL_NM, SPECTRAL_DEC, and SPECTRAL_PCT; for more on these see
readSpectraCGATS().
No attempt is made to recognize those tables that contain spectral data. For conversion of spectral
data to colorSpec objects, see readSpectraCGATS().

References

ANSI/CGATS.17. Graphic technology - Exchange format for colour and process control data using
XML or ASCII text. https://webstore.ansi.org/ 2009.

ISO/28178. Graphic technology - Exchange format for colour and process control data using XML
or ASCII text. https://www.iso.org/standard/44527.html. 2009.

CGATS.17 Text File Format. http://www.colorwiki.com/wiki/CGATS.17_Text_File_Format.

See Also

readSpectraCGATS, scan, strsplit, names

Examples

# read file with 2 tables of non-spectral data
A70 = readSpectra( system.file( "tests/A70.ti3", package='colorSpec' ) )
length(A70) # [1] 2 # the file has 2 tables
ncol( A70[[1]] ) # [1] 7 # the 1st table has 7 columns
ncol( A70[[2]] ) # [1] 4 # the 2nd table has 4 columns

readSpectra read colorSpec objects from files

Description

These functions read colorSpec objects from files. In case of ERROR, they return NULL. There are 5
different file formats supported; see Details.

Usage

readSpectra( pathvec, ... )

readSpectraXYY( path )
readSpectraSpreadsheet( path )
readSpectrumScope( path )
readSpectraCGATS( path )
readSpectraControl( path )

https://webstore.ansi.org/
https://www.iso.org/standard/44527.html
http://www.colorwiki.com/wiki/CGATS.17_Text_File_Format


84 readSpectra

Arguments

pathvec a character vector to (possibly) multiple files. The file extension and a few lines
from each file are read and a guess is made regarding the file format.

... optional arguments passed on to resample(). The most important is wavelength.
If these are missing then resample() is not called.

path a path to a single file with the corresponding format: XYY, Spreadsheet, Scope,
CGATS, or Control. See Details. If the function cannot recognize the format, it
returns NULL.

Details

readSpectra() reads the first few lines of the file in order to determine the format, and then calls
the corresponding format-specific function. If readSpectra() cannot determine the format, it re-
turns NULL. The 5 file formats are:

XYY
There is a column header line matching ^(wave|wv?l) (not case sensitive) followed by the the
names of the spectra. All lines above this one are taken to be metadata. The separarator on this
header line can be space, tab, or comma; the line is examined and the separator found there is used
in the lines with data below. The organization of the returned object is 'df.col'. This is probably
the most common file format; see the sample file ciexyz31_1.csv.

Spreadsheet
There is a line matching "^(ID|SAMPLE|Time)". This line and lines below must be tab-separated.
Fields matching '^[A-Z]+([0-9.]+)nm$' are taken to be spectral data and other fields are taken to
be extradata. All lines above this one are taken to be metadata. The organization of the returned
object is 'df.row'. This is a good format for automated acquisition, using a spectrometer, of many
spectra. See the sample file N130501.txt from Wolf Faust.

Scope
This is a file format used by Ocean Optics spectrometer software. There is a line
>»»Begin Processed Spectral Data<««
followed by wavelength and energy separated by a tab. There is only 1 spectrum per file. The
organization of the returned object is 'vector'. See the sample file pos1-20x.scope.

CGATS
This is a complex format that is best understood by looking at some samples, such as
extdata/objects/Rosco.txt; see also the References. The function readCGATS() is first called
to get all the tables, and then for each table the column names are examined. There are 2 conventions
for presenting the spectral data:

• In the standard convention the fields SPECTRAL_DEC or SPECTRAL_PCT have the spectral values.
The former is the true value, and the latter is the true value x 100. Each value column is
preceded a corresponding wavelength column, which has the field name SPECTRAL_NM. Note
that these field names are highly duplicated. In principle, this convention allows each record in
a CGATS table to have a different wavelength vector. However, this complication is rejected
by readSpectraCGATS(), which treats it as an ERROR.



readSpectra 85

• In the non-standard convention the field names that match the pattern
"^(nm|SPEC_|SPECTRAL_)[_A-Z]*([0-9.]+)$" are considered to be spectral value data,
and other fields are considered extradata. The wavelength is the numerical value of the 2nd
parenthesized expression ([0-9.]+) in nanometers. Note that every record in this CGATS
table has the same wavelength vector. Although this convention is non-standard, it appears in
files from many companies, including X-Rite.

If a data.frame has spectral data, it is converted to a colorSpec object and placed in the re-
turned list. The organization of the resulting colorSpec object is 'df.row'. If the data.frame
of extradata contains a column SAMPLE_NAME, SAMPLE_ID, SampleID, or Name, (examined in that
order), then that column is taken to be the specnames of the object. If a table has no spectral data,
then it is ignored. If the CGATS file has no tables with spectral data, then it is an ERROR and the
function returns NULL.

Control
This is a personal format used for digitizing images of plots from manufacturer datasheets and aca-
demic papers. It is structured like a .INI file. There is a [Control] section establishing a simple
linear map from pixels to the wavelength and spectrum quantities. Only 3 points are really neces-
sary. It is OK for there to be a little rotation of the plot axes relative to the image. This is followed
by a section for each spectrum, in XY pixel units only. Conversion to wavelength and spectral quan-
tities is done on-the-fly after they are read. Extrapolation can be a problem, especially when the
value is near 0. To force constant extrapolation (see resample()), repeat the control point (knot)
at the endpoint. See the sample file Lumencor-SpectraX.txt. The organization of the returned
objects is 'vector'.

Value

readSpectra() returns a single colorSpec object or NULL in case of ERROR. If there are multiple
files in pathvec and they cannot be combined using bind() because their wavelengths are different,
it is an ERROR. To avoid this ERROR, the wavelength argument can be used for resampling
to common wavelengths. If there are multiple files, the organization of the returned object is
'df.row' and the first column is the path from which the spectrum was read.

The functions readSpectraXYY(), readSpectraSpreadsheet(), and readSpectraScope(), re-
turn a single colorSpec object, or NULL in case of ERROR.

The functions readSpectraCGATS() and readSpectraControl() are more complicated. These 2
file formats can contain multiple spectra with different wavelength sequences, so both functions
return a list of colorSpec objects, even when that list has length 1. If no spectral objects are found,
they return NULL.

If readSpectra() calls readSpectraCGATS() or readSpectraControl() and receives a list of
colorSpec objects, readSpectra() attempts to bind() them into a single object. If they all have
the same wavelength vector, then the bind() succeeds and the single colorSpec object is returned.
Otherwise the bind() fails, and it is an ERROR. To avoid this error readSpectra() can be called
with a wavelength argument. The multiple spectra are resampled using resample() and then
combined using bind(), which makes it much more convenient to read such files.



86 resample

Note

During import, each read function tries to guess the quantity from spectrum names or other
cues. For example the first line in N130501.txt is IT8.7/1, which indicates that the quantity is
'transmittance' (a reflective target is denoted by IT8.7/2). If a confident guess cannot be made,
it makes a wild guess and issues a warning. If the quantity is incorrect, one can assign the correct
value after import. Alternatively one can add a line to the header part of the file with the keyword
'quantity' followed by some white-space and the correct value. It is OK to put the value in quotes.
See example files under folder extdata.

References

CGATS.17 Text File Format. http://www.colorwiki.com/wiki/CGATS.17_Text_File_Format.

ANSI/CGATS.17. Graphic technology - Exchange format for colour and process control data using
XML or ASCII text. https://webstore.ansi.org/ 2009.

ISO/28178. Graphic technology - Exchange format for colour and process control data using XML
or ASCII text. https://www.iso.org/standard/44527.html. 2009.

See Also

wavelength, quantity, metadata, resample, bind, readCGATS

Examples

# read file with header declaring the quantity to be "photons->neural"
bird = readSpectra( system.file( "extdata/eyes/BirdEyes.txt", package='colorSpec' ) )
quantity(bird) # [1] "photons->neural"

resample resample a colorSpec Object to new wavelengths

Description

interpolate or smooth to new wavelengths. Simple extrapolation and clamping is also performed.

Usage

## S3 method for class 'colorSpec'
resample( x, wavelength, method='auto', span=0.02, extrapolation='const', clamp='auto' )

http://www.colorwiki.com/wiki/CGATS.17_Text_File_Format
https://webstore.ansi.org/
https://www.iso.org/standard/44527.html


resample 87

Arguments

x a colorSpec object

wavelength vector of new wavelengths, in nanometers

method interpolation methods available are 'sprague', 'spline', and 'linear'. Also
available is 'auto' which means to use 'sprague' if x is regular, and 'spline'
otherwise. An available smoothing method is 'loess'. See Details.

span smoothing argument passed to loess() during interpolation, and not used by
other methods. The default value span=0.02 is suitable for .scope spectra but
may be too small in many other cases.

extrapolation extrapolation methods available are 'const' and 'linear'. These can be ab-
breviated to the initial letter. Also available is a numeric value, which is used
for simple padding. See Details.
Also available is a vector or list of length 2 that combines 2 of the above. The
first item is used on the low side (shorter wavelengths), and the second item is
used on the high side (longer wavelengths).

clamp clamp methods available are 'auto', TRUE, and FALSE. Also available is a nu-
meric vector of length 2, which defines the clamping interval. See Details.

Details

If method is 'sprague', the quintic polynomial in De Kerf is used. Six weights are applied to
nearby data values: 3 on each side. The 'sprague' method is only supported when x is regular.

If method is 'spline', the function stats::spline() is called with method='natural'. The
'spline' method is supported even when x is irregular.

If method is 'linear', the function stats::approx() is called. Two weights are applied to nearby
data values: 1 on each side. The 'linear' method is supported even when x is irregular.

If method is 'loess', the function stats::loess() is called with the given span parameter.
Smoothing is most useful for noisy data, e.g. raw data from a spectrometer. I have found that
span=0.02 works well for Ocean Optics .scope files, but this may be too small in other cases,
which triggers an error in stats::loess(). The 'loess' method is supported even when x is
irregular.

If extrapolation is 'const', the extreme values at each end are simply extended. If extrapolation
is 'linear', the line defined by the 2 extreme values at each end is used for extrapolation. If the
ultimate and penultimate wavelengths are equal, then this line is undefined and the function reverts
to 'const'.

If clamp is 'auto', output values are clamped to the physically realizable interval appropriate for
x. This is the interval [0,1] when quantity(x) is 'reflectance' or 'transmittance', and the
interval [0,∞) otherwise. Exception: If an input spectrum in x violates a limit, then clamping the
output spectrum to this limit is NOT enforced. This happens most frequenty for theoretical (or
matrixed) cameras, such as BT.709.RGB.

If clamp is TRUE, the result is the same as 'auto', but with no exceptions. If clamp is FALSE, then
no clamping is done.

If clamp is a numerical interval, then clamping is done to that interval, with no exceptions. The two
standard intervals mentioned above can be expressed in R as c(0,1) and c(0,Inf) respectively.



88 responsivityMetrics

Value

resample(x) returns a colorSpec object with the new wavelength. Other properties, e.g. organization,
quantity, ..., are preserved.
In case of ERROR, the function returns NULL.

References

De Kerf, Joseph L. F. The interpolation method of Sprague-Karup. Journal of Computational
and Applied Mathematics. volume I, no 2, 1975. equation (S).

See Also

organization(), quantity(), wavelength(), is.regular(), theoreticalRGB, spline(), approx(),
loess

Examples

path = system.file( "extdata/sources/pos1-20x.scope", package='colorSpec' )
y = readSpectra( path )
# plot noisy data in gray
plot( y, col='gray' )
# plot smoothed plot in black on top of the noisy one to check quality
plot( resample( y, 200:880, meth='loess', span=0.02 ), col='black', add=TRUE )

responsivityMetrics Compute Metrics for a Light Responder (e.g. a camera) or a Material
Responder (e.g. a scanner)

Description

This function computes a few technical metrics regarding some geometric objects related to a re-
sponder: the spherical chromaticity polygon, cone, convex cone, and color-solid.

Currently the function only works if the number of spectra in x is 3 (e.g. RGB or XYZ). In this case
the rows of as.matrix(x) (after weighting by step size) are called the generators; they are vectors
in R3 and we require that they are all in some open linear halfspace (unless a generator is 0). The
0-based rays through the generators intersect a plane inside the halfspace to form the vertices of the
chromaticity polygon P . The 0-based rays through points of the interior of P form a cone, and the
convex hull of this cone is a convex cone. The central projection of P onto the unit sphere is the
spherical chromaticity polygon PS . If type is 'responsivity.material', then x has an object-
color solid or Rösch Farbkörper, which is a zonohedron Z. See Centore and vignette Convexity
and Transitions for details.
Some simplification of the generators is performed during pre-processing. Generators that are 0 (in
all channels) are removed, and a group of generators that are all positive multiples of each other is
replaced by their sum. The 3-vectors are called the condensed generators. These simplifications do
not change any of the geometric objects defined above.



responsivityMetrics 89

Usage

## S3 method for class 'colorSpec'
responsivityMetrics( x )

Arguments

x a colorSpec object with type equal to 'responsivity.light' or 'responsivity.material',
and 3 spectra

Value

responsivityMetrics() returns a list with these items:

generators a pair of integers, the 1st is the number of original generators, and the 2nd is the
number of condensed generators

zeros vector of wavelengths at which the responsivity is 0 (in all 3 channels)

multiples a list of vectors of wavelengths; the responsivities in each vector (group) are
positive multiples of each other

salient a logical where TRUE means that there is some open linear halfspace that con-
tains all the non-zero generators. If all the responsivities are non-negative, which
is the usual case, then salient=TRUE.

normal If salient=TRUE, then the inward pointing unit normal for the previous halfs-
pace. Otherwise, normal=NA.

If salient=TRUE, then the list also contains:

concavities a data.frame with 2 columns: wavelength and extangle, where extangle
is the external angle at the wavelength (for the spherical chromaticity polygon
PS), and is negative. A negative angle means that PS is concave at that vertex.

coneangle the solid angle of the cone generated by the generators. This is identical to the
area of the spherical chromaticity polygon, with concavities preserved.

cxconeangle the solid angle of the convex cone generated by the generators, with no concavi-
ties. This is identical to the area of the convex hull of the spherical chromaticity
polygon. If all responsivities are non-negative, which is the usual case, then this
solid angle is less than the solid angle of an octant, which is π/2.

If the type of x is 'responsivity.material' then the list also contains:

area the surface area of the object-color solid of x

volume the volume of the object-color solid of x

In case of global error, the function returns NULL.

Note

To determine the value of salient, the package quadprog might be required.



90 scanner

References

Centore, Paul. A zonohedral approach to optimal colours. Color Research & Application. Vol.
38. No. 2. pp. 110-119. April 2013.

See Also

type, vignette Convexity and Transitions

scanner standard RGB scanners

Description

scanner.ACES is an RGB responder to material; an ACES/SMPTE standard for scanning RGB
film. The 3 spectra are defined from 368 to 728 nm, at 2nm intervals.

Format

A colorSpec object with quantity equal to 'material->electrical' and 3 spectra: r, g, and b.

Details

The responsivities have been scaled (by calibrate) so the response to the perfect transmitting filter
(PTF) is RGB=(1,1,1).

References

Technical Bulletin TB-2014-005. Informative Notes on SMPTE ST 2065-2 - Academy Printing
Density (APD). Spectral Responsivities, Reference Measurement Device and Spectral Calculation.

SMPTE ST 2065-3 Academy Density Exchange Encoding (ADX). Encoding Academy Printing
Density (APD) Values.

The Academy of Motion Picture Arts and Sciences. Science and Technology Council. Academy
Color Encoding System (ACES) Project Committee. Version 1.0 December 19, 2014. Annex A
Spectral Responsivities.

See Also

quantity, calibrate

Examples

# compute response of ACES scanner to the Hoya filters
product( Hoya, scanner.ACES, wave='auto' )

## R G B
## R-60 0.902447043 2.022522e-05 0.00000000
## G-533 0.038450857 4.900983e-01 0.05431134
## B-440 0.008466317 1.686241e-02 0.42863320
## LB-120 0.184408941 3.264111e-01 0.53492533



sectionOptimalColors 91

sectionOptimalColors compute sections of an optimal color surface by hyperplanes

Description

Consider a colorSpec object x with type equal to 'responsivity.material'. The set of all
possible material reflectance functions (or transmittance functions) is convex, closed, and bounded
(in fact they form a cube), and this implies that the set of all possible output responses from x is also
convex, closed, and bounded. The latter set is called the object-color solid or Rösch Farbkörper
for x. If the dimension of the response of x is 2, this solid is a convex polygon that is centrally
symmetric - a zonogon. If the dimension of the response of x is 3 (e.g. RGB or XYZ), this solid
is a special type of centrally symmetric convex polyhedron called a zonohedron, see Centore. This
function only supports dimensions 2 and 3. Denote this object-color solid by Z.

A color on the boundary of Z is called an optimal color. Consider the intersection of a hyperplane
with the boundary of Z. Let the equation of the hyperplane be given by:

< v, normal >= β

where normal is orthogonal to the hyperplane, and β is the plane constant, and v is a variable
vector. The purpose of the function sectionOptimalColors() is to compute the intersection set.

In dimension 2 this hyperplane is a line, and the intersection is generically 2 points, and 1 point if
the line only intersects the boundary (we ignore the special case when the intersection is an edge of
the polygon).

In dimension 3 this hyperplane is a 2D plane, and the intersection is generically a polygon, and 1
point if the line only intersects the boundary (we ignore the special case when the intersection is a
face of the zonohedron).

Of course, the intersection can also be empty.

Usage

## S3 method for class 'colorSpec'
sectionOptimalColors( x, normal, beta )

Arguments

x a colorSpec object with type equal to 'responsivity.material' and M spec-
tra, where M=2 or 3.

normal a nonzero vector of dimension M, that is the normal to a hyperplane

beta a vector of numbers of positive length. The number beta[k] defines the plane
<v,normal> = beta[k].

.



92 sectionOptimalColors

Details

Consider first the case that the dimension of x is 3, so that Z is a zonohedron. In the preprocessing
phase the zonohedral representation is calculated. The faces of Z are either parallelograms, or
compound faces that are partitioned into parallelograms. The centers of all these parallelograms are
computed, along with their extent in direction normal. For a given plane < v, normal >= β, the
parallelograms that intersect the plane are extracted. The boundary of each parallelogram intersects
the plane in 2 points (in general) and one of those points is computed. The set of all these points is
then sorted into proper order around the boundary.
In the case that the dimension of x is 2, so that Z is a zonogon, the parallelograms are replaced by
line segments (edges), and the processing is much easier.

Value

The function returns a list with an item for each value in vector beta. Each item in the output is a
list with these items:

beta the value of the plane constant β

section an NxM matrix, where N is the number of points in the section, and M is the
dimension of normal. If the intersection is empty, then N=0.

In case of global error, the function returns NULL.

WARNING

The preprocessing calculation of the zonohedron dominates the total time. And this time goes up
rapidly with the number of wavelengths. We recommend using a wavelength step of 5nm, as in the
Examples. For best results, batch a lot of betas into a single function call and then process the
output.
Moreover, the preprocessing time is dominated by the partitioning of the compound faces into
parallelograms. This is made worse by an x whose spectral responses have little overlap, as in
scanner.ACES. In these cases, try a larger step size, and then reduce. Optimizing these compound
faces is a possible topic for the future.

References

Centore, Paul. A Zonohedral Approach to Optimal Colours. Color Research & Application. Vol.
38. No. 2. pp. 110-119. April 2013.

Logvinenko, A. D. An object-color space. Journal of Vision. 9(11):5, 1-23, (2009).
https://jov.arvojournals.org/article.aspx?articleid=2203976. doi:10.1167/9.11.5.

See Also

vignette Plotting Chromaticity Loci of Optimal Colors, probeOptimalColors()

Examples

wave = seq(420,680,by=5)
Flea2.scanner = product( A.1nm, "material", Flea2.RGB, wavelength=wave )
seclist = sectionOptimalColors( Flea2.scanner, normal=c(0,1,0), beta=10 )



solar.irradiance 93

length( seclist[[1]]$section )
seclist[[1]]$section[ 1:5, ]
## [1] 207 # the polygon has 207 vertices, and the first 5 are:
## Red Green Blue
## [1,] 109.2756 10 3.5391342
## [2,] 109.5729 10 2.5403628
## [3,] 109.8078 10 1.7020526
## [4,] 109.9942 10 1.0111585
## [5,] 110.1428 10 0.4513051

solar.irradiance Standard Solar Irradiance - Extraterrestrial and Terrestrial

Description

solar.irradiance Three power spectra; from 280 to 1000 nm at 1 nm intervals. The unit is
W ∗m−2 ∗ nm−1.

atmosphere2003 a transmittance spectrum = the quotient of 2 spectra from solar.irradiance

Format

solar.irradiance is a colorSpec object with quantity equal to 'energy' and with 3 spectra:

AirMass.0 Extraterrestrial Radiation (solar spectrum at top of atmosphere) at mean Earth-Sun
distance

GlobalTilt spectral radiation from solar disk plus sky diffuse and diffuse reflected from ground
on south facing surface tilted 37 deg from horizontal

AirMass.1.5 the sum of Direct and Circumsolar irradiance, when the optical path is 1.5 times that
of the sun at zenith, see Details

atmosphere2003 is a colorSpec object with quantity equal to 'transmittance' and with 1 spec-
trum:

AirMass.1.5 the quotient AirMass.1.5 / AirMass.0 from solar.irradiance

Details

Direct is Direct Normal Irradiance Nearly parallel (0.5 deg divergent cone) radiation on surface
with surface normal tracking (pointing to) the sun, excluding scattered sky and reflected ground
radiation.

Circumsolar is Spectral irradiance within +/- 2.5 degree (5 degree diameter) field of view centered
on the 0.5 deg diameter solar disk, but excluding the radiation from the disk.

Note

The reference spectra in ASTM G173-03 are designed for Photovoltaic Performance Evaluation.

The original wavelength sequence in ASTM G173-03 is irregular. The interval is 0.5 nanometer
from 280 to 400 nm, 1 nm from 400 to 1700 nm, an intermediate wavelength at 1702 nm, and 5
nm from 1705 to 4000 nm. To create the object solar.irradiance with a regular step size, the
original was resampled from 280 to 1000 nm at 1nm intervals.



94 specnames

Source

Reference Solar Spectral Irradiance: ASTM G-173. http://rredc.nrel.gov/solar/spectra/
am1.5/astmg173/astmg173.html

References

ASTM G173-03 Reference Spectra Derived from SMARTS v. 2.9.2.
Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on
37-deg Tilted Surface (2003)

See Also

D65, D50, daylightSpectra, resample, vignette Blue Flame and Green Comet

specnames specnames of a colorSpec object

Description

Retrieve or set the specnames of a colorSpec object. Retrieve the number of spectra.

Usage

## S3 method for class 'colorSpec'
specnames(x)

## S3 replacement method for class 'colorSpec'
specnames(x) <- value

## S3 method for class 'colorSpec'
numSpectra(x)

Arguments

x a colorSpec R object

value a character vector with length equal to the number of spectra in x.

Details

If the organization of x is "vector" then x is a vector and value is a single string, which is stored
as attr(x,'specname').

If the organization of x is "matrix", then x is a matrix and value is stored as colnames(x).

If the organization of x is "df.col", then x is a data.frame with N+1 columns, where N is the
number of spectra. value is stored as colnames(x)[2:(N+1)].

If the organization of x is "df.row", then x is a data.frame and value is stored as row.names(x).

http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html
http://rredc.nrel.gov/solar/spectra/am1.5/astmg173/astmg173.html


standardRGB 95

Value

specnames() returns a character vector with the names of the spectra.

numSpectra(x) is equal to length(specnames(x)) but much more efficient.

See Also

rownames, colnames

standardRGB Convert from XYZ to some standard RGB spaces

Description

To display an XYZ value, it typically must be converted to a standard RGB space. This is the
function to do it.

Usage

RGBfromXYZ( XYZ, space )

Arguments

XYZ a 3-vector, or a matrix with 3 columns with XYZs in the rows

space the name of the RGB space - either 'sRGB' or 'Adobe RGB'. The match is case-
insensitive, and spaces in the string are ignored.

Details

The input XYZ is multiplied by the appropriate 3x3 conversion matrix (for sRGB or Adobe RGB).
These matrices are taken from Lindbloom and not from the corresponding Wikipedia articles; for
the reason why see Note.

Value

An Mx3 matrix where M is the number of rows in XYZ, or M=1 if XYZ is a 3-vector. Each row of
the returned matrix is filled with linear RGB in the appropriate RGB space. Values outside the unit
cube are not clamped. To compute non-linear display RGB, see DisplayRGBfromLinearRGB().
In case of error the function returns NULL.

WARNING

This function is deprecated. New software should use spacesRGB::RGBfromXYZ() instead. The
new function returns "signal RGB" instead of linear RGB.



96 subset

Note

An RGB space is normally defined by the xy chromaticities of the 3 primaries and the white point.
We follow Lindbloom in using the ’official’ XYZ of the white point from ASTM E308. Using this
XYZ of the white point makes the color space a little more consistent with other areas of color.
For example, from IEC 61966-2-1 we have D65 xyY=(0.3127,0.3290,1) -> XYZ=(0.9504559,1,1.0890578).
But from ASTM E308, D65 XYZ=(0.95047,1,1.08883), which is a little different.

Source

IEC 61966-2-1:1999. Multimedia systems and equipment - Colour measurement and management.
Part 2-1: Colour management - Default RGB colour space - sRGB. https://webstore.iec.ch/
publication/6169

Lindbloom, Bruce. RGB/XYZ Matrices. http://brucelindbloom.com/index.html?Eqn_RGB_
XYZ_Matrix.html

Wikipedia. sRGB. https://en.wikipedia.org/wiki/SRGB

Wikipedia. Adobe RGB. https://en.wikipedia.org/wiki/Adobe_RGB_color_space

See Also

D65, officialXYZ, DisplayRGBfromLinearRGB

Examples

RGBfromXYZ( officialXYZ('D65'), 'sRGB' )
# R G B
# [1,] 1 1 1 # not really 1s, but difference < 1.e-7

RGBfromXYZ( c(.3127,0.3290,0.3583)/0.3290, 'sRGB' )
# R G B
# [1,] 0.9998409 1.000023 1.00024 difference > 1.e-5

subset extract a subset of a colorSpec Object

Description

extract a subset of the spectra in a colorSpec object.
The subset can be specified by indexes, by a logical vector, or by a regular expression matching the
specnames

Usage

## S3 method for class 'colorSpec'
subset( x, subset, ... )

https://webstore.iec.ch/publication/6169
https://webstore.iec.ch/publication/6169
http://brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
http://brucelindbloom.com/index.html?Eqn_RGB_XYZ_Matrix.html
https://en.wikipedia.org/wiki/SRGB
https://en.wikipedia.org/wiki/Adobe_RGB_color_space


theoreticalRGB 97

Arguments

x a colorSpec object

subset an integer vector, a logical vector, or a regular expression

... additional arguments ignored

Details

If subset is an integer vector, each integer must be between 1 and M, where M the number of spec-
tra in x. No duplicates are allowed. The number of spectra returned is equal to length(subset). It
is OK for the length to be 0, in which case the function returns the empty subset.

If subset is a logical vector, its length must be equal to M. The number of spectra returned is equal
to the number of TRUEs in subset.

If subset is a regular expression, the number of spectra returned is equal to the number of specnames(x)
matched by the expression.

Value

subset(x) returns a colorSpec object with the same organization as x. Exception: if the or-
ganization of x is 'vector' and the subset is empty, then the returned object is a matrix with 0
columns.

Note

subset() can also be used for re-ordering the spectra; just set argument subset to the desired
permutation vector.

See Also

organization

Examples

tritanope = subset( lms2000.1nm, 1:2 ) # keep long and medium cone fundamentals, but drop the short

sml2000.1nm = subset( lms2000.1nm, 3:1 ) # reorder from short to long

theoreticalRGB Theoretical RGB Cameras - BT.709.RGB, Adobe.RGB, and
ACES.RGB



98 theoreticalRGB

Description

These are 3 built-in colorSpec objects, with quantity equal to 'energy->electrical'.

BT.709.RGB a theoretical RGB responder to light. The 3 responsivity spectra are constructed so
that the RGBs from this theoretical camera, when displayed on an sRGB display after cor-
rect EOTF adjustment, would emit light with the same XYZs as the captured scene (up to a
constant multiple). All three responsivities have negative lobes.

Adobe.RGB a theoretical RGB responder to light. The 3 responsivity spectra are constructed so
that the RGBs from this theoretical camera, when displayed on an Adobe RGB display after
correct EOTF adjustment, would emit light with the same XYZs as the captured scene (up to
a constant multiple). All three responsivities have negative lobes.

ACES.RGB a theoretical RGB responder to light. Unlike the two above cameras, the responsivities
are non-negative and so this camera could be built, in principle. These are the ACES RICD
(Reference Input Capture Device) spectral sensitivities.

Format

All are colorSpec objects with quantity equal to 'energy->electrical' and 3 spectra: r, g, and
b. The wavelengths are 360 to 830 nm at 1 nm intervals.

Details

All responsitivity spectra are linear combinations of the spectra in xyz1931.1nm. These 3 theoreti-
cal cameras satisfy the Maxwell-Ives criterion by construction.
For BT.709.RGB and Adobe.RGB, the responsivities are scaled so the response to D65.1nm is RGB=(1,1,1).
These responsivities have negative lobes.
The BT.709 primaries and white point are the same as those of sRGB (though the EOTF functions
are different).
Adobe RGB and sRGB share the same Red, Blue, and White chromaticities, and only differ in the
Green. This implies that for both cameras the Green output is 0 at Red and Blue, and 1 at White.
This in turn implies that the Green output is identical for both cameras for all input spectra, and so
the Green responsivity spectra are identical for both cameras.
For ACES.RGB the responsivities are area normalized as in Annex C of S-2008-001. They are scaled
so that the response to Illuminant E is RGB=(1,1,1). For an example of white-balancing, as in
Annex B, see the examples below.

References

Poynton, Charles. Digital Video and HD - Algorithms and Interfaces. Morgan Kaufmann. Sec-
ond Edition. 2012. Figure 26.5 on page 302.

Academy Color Encoding Specification (ACES). S-2008-001. 2011. Annex B, pp. 23-25. Annex
C, pp. 26-33.

See Also

quantity(), D65.1nm, xyz1931.1nm, ptransform(), calibrate(), vignette Blue Flame and
Green Comet



wavelength 99

Examples

####### BT.709.RGB is created using the following recipe ########
P = matrix( c(0.64,0.33,NA, 0.3,0.6,NA, 0.15,0.06,NA ), 3, 3, byrow=TRUE )
rownames(P) = c('R','G','B')
BT.709.RGB = ptransform( xyz1931.1nm, P, D65.1nm )
quantity(BT.709.RGB) = "energy->electrical"

####### Adobe.RGB recipe is the same, except for the matrix P ########
P = matrix( c(0.64,0.33,NA, 0.21,0.71,NA, 0.15,0.06,NA ), 3, 3, byrow=TRUE )
rownames(P) = c('R','G','B')
Adobe.RGB = ptransform( xyz1931.1nm, P, D65.1nm )
quantity(Adobe.RGB) = "energy->electrical"

####### white-balancing ACES.RGB for CIE Standard Illuminant D60 ########
# in a scene illuminated by daylight illuminant D6003,
# and with a perfect-reflecting-diffuser in that scene,
# object 'camera1' would have response RGB=(1,1,1) for that diffuser.
D6003 = daylightSpectra( 6000*1.4388/1.4380, wavelength=wavelength(ACES.RGB) )
camera1 = calibrate( ACES.RGB, D6003, 1, method='scaling' )

wavelength wavelength vector of a colorSpec object

Description

Retrieve or set the wavelengths of a colorSpec object. Retrieve the number of wavelengths, and
whether the wavelength sequence is regular.

Usage

## S3 method for class 'colorSpec'
wavelength(x)

## S3 replacement method for class 'colorSpec'
wavelength(x) <- value

## S3 method for class 'colorSpec'
numWavelengths(x)

## S3 method for class 'colorSpec'
is.regular(x)
step.wl(x)

Arguments

x a colorSpec R object
value a numeric vector with length equal to the number of wavelengths in x. The

wavelengths must be increasing. The unit must be nanometers.



100 xyz1931

Details

If the organization of x is 'df.col', then x is a data.frame and the wavelength vector is stored
in the first column of x.
Otherwise, the wavelength vector is stored as attr(x,'wavelength').

Value

wavelength() returns a numeric vector with the wavelengths of the spectra, in nanometers.

numWavelengths(x) is equal to length(wavelength(x)) but much more efficient.

is.regular() returns TRUE or FALSE, depending on whether the step between consecutive wave-
lengths is a constant. A truncation error of 1.e-6 nm is tolerated here. For example, the X-Rite
ColorMunki spectrometer in hi-res mode has a step of 3.33333nm, and it is considered regular.

step.wl() returns the mean step in nm, whether the wavelengths are regular or not.

See Also

colorSpec

xyz1931 CIE Color Matching Functions - 2-degree (1931)

Description

xyz1931.1nm the 1931 2° functions from 360 to 830 nm, at 1nm intervals
xyz1931.5nm the 1931 2° functions from 380 to 780 nm, at 5nm intervals

Format

Each is a colorSpec object organized as a matrix with 3 variables.

x the x-bar responsivity function
y the y-bar responsivity function
z the z-bar responsivity function

Source

http://www.cvrl.org

http://www.cvrl.org


xyz1964 101

References

Günther Wyszecki and W.S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982. Table I(3.3.1). pp. 723-735.

ASTM E 308 - 01. Standard Practice for Computing the Colors of Objects by Using the CIE System.
Table 1

See Also

xyz1964

Examples

summary(xyz1931.1nm)
white.point = product( D65.1nm, xyz1931.1nm, wave='auto' )

xyz1964 CIE Color Matching Functions - 10-degree (1964)

Description

xyz1964.1nm the 10° 1964 functions from 360 to 830 nm, at 1nm intervals
xyz1964.5nm the 10° 1964 functions from 380 to 780 nm, at 5nm intervals

Format

Each is a colorSpec object organized as a matrix with 3 columns.

x the x-bar responsivity function
y the y-bar responsivity function
z the z-bar responsivity function

Source

http://www.cvrl.org

References

Günther Wyszecki and W.S. Stiles. Color Science : Concepts and Methods, Quantitative Data
and Formulae. Second Edition. Wiley-Interscience. 1982. Table I(3.3.1). pp. 723-735.

ASTM E 308 - 01. Standard Practice for Computing the Colors of Objects by Using the CIE System.
Table 1

http://www.cvrl.org


102 xyz1964

See Also

xyz1931

Examples

summary(xyz1964.1nm)
white.point = product( D65.1nm, xyz1964.1nm, wave='auto' )



Index

∗ RGB
DisplayRGB, 34
standardRGB, 95

∗ atmosphere
atmosphere, 9

∗ cameras
Flea2.RGB, 38

∗ colorSpec
applyspec, 7
as.data.frame, 8
bind, 12
calibrate, 14
canonicalOptimalColors, 16
chop, 18
colorSpec, 19
computeADL, 21
convolvewith, 28
coredata, 29
emulate, 35
extradata, 36
interpolate, 41
invert, 42
linearize, 48
mean, 55
metadata, 56
multiply, 57
organization, 59
plot, 62
plotOptimals, 64
print, 66
probeOptimalColors, 67
product, 70
ptransform, 75
quantity, 78
readCGATS, 81
readSpectra, 83
resample, 86
responsivityMetrics, 88
sectionOptimalColors, 91

specnames, 94
subset, 96
wavelength, 99

∗ datasets
ABC, 4
D50, 31
D65, 32
daylight, 32
F96T12, 37
Flea2.RGB, 38
Fluorescents, 39
HigherPasserines, 39
Hoya, 40
lms1971, 49
lms2000, 50
luminsivity, 52
scanner, 90
solar.irradiance, 93
theoreticalRGB, 97
xyz1931, 100
xyz1964, 101

∗ eyes
HigherPasserines, 39
lms1971, 49
lms2000, 50
luminsivity, 52
officialXYZ, 58
xyz1931, 100
xyz1964, 101

∗ light
ABC, 4
actinometric, 5
computeCCT, 23
computeCRI, 25
computeSSI, 26
D50, 31
D65, 32
daylight, 32
F96T12, 37

103



104 INDEX

lightResponsivitySpectra, 46
LightSpectra, 47
photometric, 61
radiometric, 80

∗ logging
logging, 51

∗ materials
bandSpectra, 11
Hoya, 40
materialSpectra, 53

∗ options
cs.options, 30

∗ package
colorSpec-package, 3

A.1nm (ABC), 4
ABC, 4, 31, 32, 37, 39, 59
ACES.RGB (theoreticalRGB), 97
actinometric, 5, 81
Adobe.RGB (theoreticalRGB), 97
apply, 7, 8
applyspec, 7, 29
approx, 87, 88
as.colorSpec (colorSpec), 19
as.data.frame, 8
as.matrix, 9
as.matrix.colorSpec (coredata), 29
atmosphere, 9
atmosphere2003, 10
atmosphere2003 (solar.irradiance), 93
atmosTransmittance (atmosphere), 9

B.5nm (ABC), 4
bandMaterial (bandSpectra), 11
bandRepresentation, 18
bandRepresentation (bandSpectra), 11
bandSpectra, 11
bind, 12, 85, 86
BT.709.RGB, 87
BT.709.RGB (theoreticalRGB), 97

C.5nm (ABC), 4
calibrate, 14, 73, 74, 90, 98
canonicalOptimalColors, 16
chop, 18
colnames, 95
colorRamp, 63, 64
colorSpec, 4, 15, 19, 58, 60, 76, 79, 100
colorSpec-package, 3

computeADL, 4, 21, 55
computeCCT, 23, 26, 27, 63, 64
computeCRI, 25
computeSSI, 26
convolvewith, 28
coredata, 21, 29
cs.options, 7, 30, 51, 81

D50, 5, 31, 32, 33, 39, 59, 94
D65, 5, 31, 32, 33, 37, 39, 59, 94, 96
D65.1nm, 98
daylight, 32, 32, 46, 48
daylight1964, 47
daylight1964 (daylight), 32
daylight2013, 47
daylight2013 (daylight), 32
daylightSpectra, 27, 31–33, 37, 94
daylightSpectra (LightSpectra), 47
DisplayRGB, 34
DisplayRGBfromLinearRGB, 95, 96
DisplayRGBfromLinearRGB (DisplayRGB), 34

emulate, 35
erythemalSpectrum

(lightResponsivitySpectra), 46
extradata, 9, 13, 18, 36, 42, 45, 57, 60, 66,

68, 69, 73
extradata<- (extradata), 36

F96T12, 37, 81
Flea2 (Flea2.RGB), 38
Flea2.RGB, 38
Fluorescents, 39, 59
Fs.5nm (Fluorescents), 39

ginv, 35, 36

HigherPasserines, 39
Hoya, 40

illuminantE, 15, 59
illuminantE (LightSpectra), 47
interpolate, 41
invert, 42
is.actinometric (actinometric), 5
is.colorSpec (colorSpec), 19
is.radiometric (radiometric), 80
is.regular, 15, 21, 88
is.regular (wavelength), 99



INDEX 105

legend, 63
lensAbsorbance (materialSpectra), 53
lightResponsivitySpectra, 46
LightSpectra, 47
lightSpectra, 46, 55
lightSpectra (LightSpectra), 47
linearize, 8, 29, 48, 79
lines, 64
lines.default, 63
lms1971, 49, 50
lms2000, 40, 50, 50
loess, 87, 88
logging, 30, 51
luminsivity, 52
luminsivity.1nm, 62

materialSpectra, 46, 48, 53
matplot, 63, 64
mean, 55
metadata, 13, 21, 37, 56, 86
metadata<- (metadata), 56
modifyList, 56, 57
multiply, 14, 15, 36, 57, 76

names, 83
neutralMaterial, 15
neutralMaterial (materialSpectra), 53
normalize (multiply), 57
NROW, 20
numSpectra (specnames), 94
numWavelengths (wavelength), 99

officialXYZ, 58, 96
options, 30, 51
organization, 8, 13, 19–21, 28, 29, 37, 42,

45, 48, 59, 73, 85, 88, 97
organization<- (organization), 59

photometric, 52, 53, 61
planckSpectra, 24, 27
planckSpectra (LightSpectra), 47
plot, 62, 63, 64
plot.default, 64
plotOptimals, 64
plotOptimals2D (plotOptimals), 64
plotOptimals3D (plotOptimals), 64
print, 66, 66
probeOptimalColors, 18, 22, 23, 65, 67, 92
product, 15, 36, 45, 58, 63, 70, 76

ptransform, 75, 98

quantity, 5–8, 10, 12, 13, 15, 20, 21, 24, 28,
29, 36, 38, 39, 41, 42, 45, 46, 48, 49,
54, 55, 58, 62, 76, 78, 80, 81, 86, 88,
90, 98

quantity<- (quantity), 78

radiometric, 7, 62, 74, 79, 80
rbind.fill, 13
readAllSpectra (readSpectra), 83
readCGATS, 81, 84, 86
readSpectra, 83
readSpectraCGATS, 83
readSpectraCGATS (readSpectra), 83
readSpectraControl (readSpectra), 83
readSpectraSpreadsheet (readSpectra), 83
readSpectraXYY (readSpectra), 83
readSpectrumScope (readSpectra), 83
rectangularMaterial, 12
rectangularMaterial (materialSpectra),

53
resample, 48, 70, 74, 84–86, 86, 94
responsivityMetrics, 88
RGBfromXYZ, 34
RGBfromXYZ (standardRGB), 95
rootSolve::multiroot, 44, 45
rownames, 95

scan, 82, 83
scanner, 90
scanner.ACES, 18, 69, 92
sectionOptimalColors, 64, 65, 91
segments, 63, 64
sink, 51
solar.irradiance, 10, 93
spacesXYZ::CCTfromXYZ, 23, 24
specnames, 10, 13, 21, 24, 27, 31, 32, 36, 37,

45, 55, 58, 63, 94, 96
specnames<- (specnames), 94
spline, 42, 87, 88
standardRGB, 95
stderr, 51
stdout, 66
step.wl, 21, 73, 74
step.wl (wavelength), 99
str, 73
strsplit, 82, 83
subset, 63, 64, 96



106 INDEX

summary, 15, 66
summary.colorSpec (print), 66

theoreticalRGB, 88, 97
ts, 21, 60
type, 6, 7, 18, 23, 24, 26, 27, 36, 45, 62, 65,

69, 74, 80, 81, 90
type (quantity), 78

wavelength, 8, 13, 15, 21, 28, 29, 36, 42, 58,
74, 76, 86, 88, 99

wavelength<- (wavelength), 99

xyz1931, 24, 26, 100, 102
xyz1931.1nm, 24, 53, 98
xyz1964, 101, 101


	colorSpec-package
	ABC
	actinometric
	applyspec
	as.data.frame
	atmosphere
	bandSpectra
	bind
	calibrate
	canonicalOptimalColors
	chop
	colorSpec
	computeADL
	computeCCT
	computeCRI
	computeSSI
	convolvewith
	coredata
	cs.options
	D50
	D65
	daylight
	DisplayRGB
	emulate
	extradata
	F96T12
	Flea2.RGB
	Fluorescents
	HigherPasserines
	Hoya
	interpolate
	invert
	lightResponsivitySpectra
	LightSpectra
	linearize
	lms1971
	lms2000
	logging
	luminsivity
	materialSpectra
	mean
	metadata
	multiply
	officialXYZ
	organization
	photometric
	plot
	plotOptimals
	print
	probeOptimalColors
	product
	ptransform
	quantity
	radiometric
	readCGATS
	readSpectra
	resample
	responsivityMetrics
	scanner
	sectionOptimalColors
	solar.irradiance
	specnames
	standardRGB
	subset
	theoreticalRGB
	wavelength
	xyz1931
	xyz1964
	Index

